Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Direct growth of nickel terephthalate on Ni foam with large massloading for high-performance supercapacitors

Qiulin Chen, Shuijin Lei*, Peiqin Deng, Xiuling Ou, Lianfu Chen, Wei Wang, Yanhe

Xiao and Baochang Cheng

School of Materials Science and Engineering, Nanchang University, Nanchang,

Jiangxi 330031, P. R. China

*To whom correspondence should be addressed. E-mail: shjlei@ncu.edu.cn

Fig. S1 EDS spectrum of the as-prepared Ni-Tp sample.

Fig. S2 (a) The high-magnification SEM image of the PANI coated Ni-Tp and (b) the close-up SEM image of the deposited PANI.

Fig. S3 GCD curves of the prepared Ni-Tp electrode at the current densities of 35, 40, and 45 mA cm⁻².

Fig. S4 The (a) first and (b) last ten charge-discharge cycles of the as-synthesized Ni-Tp electrode at a current density of 50 mA cm⁻².

Fig. S5 GCD curves of the prepared Ni-Tp/PANI electrode at the current densities of 60, 70, 80, and 90 mA cm⁻².

Fig. S6 The (a) first and (b) last ten charge-discharge cycles of the as-synthesized Ni-Tp/PANI electrode at a current density of 50 mA cm⁻².

Fig. S7 (a) The low-magnification and (b) high-magnification SEM images of the Ni-Tp/PANI electrode after cycling test.

Electrode	Electrolyte	Mass loading (mg cm ⁻²)	C _a ^(a) (F cm ⁻²) (CD ^(c) /SR ^(d))	C ^{g(b)} (F g ⁻¹) (CD/SR)	ASC ^(e) (NE ^(f))	ED ^(g) /PD ^(h) (W h kg ⁻¹ / W kg ⁻¹)	Ref.
Ni ₃ (HITP) ₂	1 M TEABF4/ACN	7~11	11 ×10 ⁻⁶ (1.6×10 ⁻⁴ mA cm ⁻²)	70 (1 A g ⁻¹)	-	-	1*
Ni-imidazolate	1 M LiOH	0.1	-	306.8 (0.5 A g ⁻¹)	-	-	2
Ni/Co-imidazolate	1 M LiOH	0.1	-	$530.4 (0.5 \text{ A g}^{-1})$	-	-	2
Ni-gallate/Ni-foam	6 M KOH	3	3.688 (9 mA cm ⁻²)	1229.3 (3 A g ⁻¹)	AC	23.8/388.2 (0.5 A g ⁻¹)	3
Ni-DMOF-ADC	2 M KOH	1.9	-	552 (1 A g ⁻¹)	AC	-	4
Ni-PTA	3 М КОН	5	-	988 (1.4 A g ⁻¹)	AC	4.18 mW h cm ⁻³ / 231.2 mW cm ⁻³ (1 mA cm ⁻²)	5
Ni-salicylate	6 M KOH	20	-	1698 (1 A g ⁻¹)	graphene	-	6
Ni-MOF/CNT	6 M KOH	4	-	1765 (0.5 A g ⁻¹)	rGO/g-C ₃ N ₄	36.6/480 (0.5 A g ⁻¹)	7
rGO-Ni-doped MOF	1 M KOH	-	-	758 (0.5 A g ⁻¹)	-	-	8
Ni ₂ (DOT)	1 M TEABF4/ACN	-	0.415 (7.0×10 ⁻³ mA cm ⁻²)	-	-	-	9*
Zn-doped Ni-BDC	6 M KOH	5	-	1620 (0.25 A g ⁻¹)	-	-	10
Ni-p-BDC	6 M KOH	5	-	1127 (0.5 A g ⁻¹)	-	-	11
Ni ₂ CO ₃ (OH) ₂	6 M KOH	5.925	-	668 (5 mV s ⁻¹)	-	-	12
Ni ₂ CO ₃ (OH) ₂ /ZIF-8	6 M KOH	4.65	-	851 (5 mV s ⁻¹)	-	-	12
Ni ₃ (btc) ₂ ·12H ₂ O	2 M KOH	8	-	726 (1 A g ⁻¹)	AC	$16.5/180^{\#} (0.25 \text{ A g}^{-1})$	13
Ni-isonicotinic	6 M KOH	3	-	634 (5 mV s ⁻¹)	-	-	14
Ni-Tp/PANI/Ni-foam	3 М КОН	11	10.327 (20 mA cm ⁻²)	938.845 (1.818 A g ⁻¹)	AC	19.853/430.556 (0.556 A g ⁻¹)	this work

Table S1 Comparison of the electrochemical performances of the as-prepared Ni-Tp/PANI/Ni-foam with previously reported Ni-based MOF materials for supercapacitors.

^(a)C_a: areal capacitance; ^(b)C_g: gravimetric capacitance; ^(c)CD: current density; ^(d)SR: scan rate; ^(e)ASC: asymmetric supercapacitor; ^(f)NE: negative electrode; ^(g)ED: energy density; ^(h)PD: power density; *Note: electrochemical performances were measured in a twoelectrode configuration, others in three-electrode configuration. The areal capacitance, together with the current density, was normalized to specific surface area (630 m² g⁻¹) for Ref. 1, and to stack volume (7.9×10^{-3} cm³) for Ref. 9; #The power density value was obtained by estimation which was not provided in the text.

Electrode	Electrolyte	Mass loading (mg cm ⁻²)	C _a ^(a) (F cm ⁻²) (CD ^(c) /SR ^(d))	C ^{g(b)} (F g ⁻¹) (CD/SR)	ASC ^(e) (NE ^(f))	ED ^(g) /PD ^(h) (W h kg ⁻¹ / W kg ⁻¹)	Ref.
Ni(OH) ₂ nanosheets	2 M KOH	2	4.8 (2 mA cm ⁻²)	2384.3 (1 A g ⁻¹)	-	-	15
Ni(OH) ₂ platelets	2 M KOH	3	0.43 (1 A g ⁻¹)	1422 (1 A g ⁻¹)	-	-	16
Ni-Co LDH	1 M KOH	3	1.6 (1.8 mA cm ⁻²)	2682 (3 A g ⁻¹)	rGO	188/1499 (1 A g ⁻¹)	17
Ni(OH) ₂ /CNT	6 M KOH	4.85	16 (2.5 mA cm ⁻²)	3300 (0.5 A g ⁻¹)	AC	50.6/95 (2.5 mA cm ⁻²)	18
NiO nanosheets	2 M KOH	0.15	0.376 (13.4 A g ⁻¹)	2504.3 (13.4 A g ⁻¹)	-	-	19
NiO Nanorod Arrays	1 M NaOH	2.2	4.44 (5 mA cm ⁻²)	2018 (2.27 A g ⁻¹)	-	-	20
Ni _x Co _{3-x} O ₄ nanowires	2 M KOH	2.5	3.7 (2.5 mA cm ⁻²)	1479 (1 A g ⁻¹)	AC	37.4/163 (3.6 mA cm ⁻²)	21
Cu _{0.2} Ni _{0.8} O nanowires	1 M KOH	4	2.24 (2.5 mA cm ⁻²)	1955 (1 mV s ⁻¹)	AC	29.7/129 (2 mA cm ⁻²)	22
NiCo2O4 nanoneedles	2 M KOH	0.9	1.01 (5.56 mA cm ⁻²)	1118.6 (5.56 mA cm ⁻²)	-	-	23
NiCo2O4 nanosheets1	2 M KOH	1.2	3.51 (1.8 mA cm ⁻²)	2925 (1.5 A g^{-1})	-	-	24
NiCo2O4 nanosheets2	3 M KOH	0.8	1.61 (1.6 mA cm ⁻²)	2010 (2 A g ⁻¹)	-	-	25
NiCo2O4 nanowires	3 M KOH	3	8.04 (2 A g ⁻¹)	2681 (2 A g ⁻¹)	-	-	26
NiCo2O4@ NiCo2O4	2 M KOH	1.97	1.55 (2 mA cm ⁻²)	787 (2 mA cm ⁻²)	-	-	27
NiMoO4 nanosheets	2 M KOH	1.2	1.47 (1 A g ⁻¹)	1221.2 (1 A g ⁻¹)	AC	60.9/850 (1 A g ⁻¹)	28
NiMoO ₄ nanowires	2 M KOH	1.5	4.94 (8 mA cm ⁻²)	3293 (5.3 A g ⁻¹)	-	-	29
NiWO4 nanostructure	2 M KOH	0.75	$0.6 (1 \text{ A g}^{-1})$	797.8 (1 A g ⁻¹)	-	-	30
NiMn ₂ O ₄ nanosheets	6 M KOH	0.17	0.11 (1 A g ⁻¹)	662.5 (1 A g ⁻¹)	-	-	31
NH4NiPO4·H2O	3 M KOH	1~1.5 mg	-	1513 (5 A g ⁻¹)	AC	$41.6/375 (0.5 \text{ A g}^{-1})$	32
NiCo2O4@NiWO4	6 M KOH	3.66	5.07 (1 A g ⁻¹)	1384 (1 A g ⁻¹)	AC	41.5/760 (1 A g ⁻¹)	33
NiCo ₂ O ₄ @Ni ₃ S ₂	2 M KOH	2.1	3.6 (1 A g ⁻¹)	1716 (1 A g ⁻¹)	-	-	34
Ni_3S_2 nanosheets	6 M KOH	2	2.74 (2 A g ⁻¹)	1370.4 (2 A g ⁻¹)	AC	$34.6/150.4 (0.2 \text{ A g}^{-1})$	35
NiS_2 hollow prisms	2 M LiOH	1	1.73 (5 A g ⁻¹)	1725 (5 A g ⁻¹)	-	-	36
Ni ₃ S ₂ @β-NiS	6 M KOH	-	-	1158 (2 A g ⁻¹)	AC	55.1/925.9 (1 A g ⁻¹)	37
$Ni_3S_2@MoS_2$	2 M KOH	-	-	848 (5 A g ⁻¹)	-	-	38
Ni-Co sulfide	1 M KOH	2.5	6 (2.5 mA cm ⁻²)	2415 (1 A g ⁻¹)	AC	25/447 (8 mA cm ⁻²)	39
NiCo ₂ S ₄ core-shell	6 M KOH	1	1.948 (1 mA cm ⁻²)	1948 (1 A g ⁻¹)	Porous C	22.8/160 (1 mA cm ⁻²)	40
$NiCo_2S_4$ nanotubes 1	6 M KOH	4.2	3.3 (2 A g ⁻¹)	783 (2 A g ⁻¹)	-	-	41
$NiCo_2S_4$ nanotubes2	6 M KOH	6	14.39 (5 mA cm ⁻²)	2398 (5 mA cm ⁻²)	rGO	31.5/156.6 (10 mA cm ⁻²)	42
CoNi ₂ S ₄ mushroom	2 M KOH	2.1	5.82 (10 mA cm ⁻²)	2700 (4.76 A g ⁻¹)	-	-	43
CoNi ₂ S ₄ nanosheets	2 M KOH	2.2	6.39 (5 mA cm ⁻²)	2906 (2.27 A g ⁻¹)	AC	33.9/409 (10 mA cm ⁻²)	44
Ni ₂ P nanosheets	6 M KOH	1.2	4.2 (3 mA cm ⁻²)	$3496 (2.5 \text{ A g}^{-1})$	AC	26/337 (5 mV s ⁻¹)	45
Ni-Tp/PANI/Ni-foam	3 M KOH	11	10.327 (20 mA cm ⁻²)	938.845 (1.818 A g ⁻¹)	AC	19.853/430.556 (0.556 A g ⁻¹)	this work

Table S2 Comparison of the electrochemical performances of the as-prepared Ni-Tp/PANI with previously reported Ni-based compounds directly grown on Ni foam for supercapacitors.

^(a) C_a : areal capacitance; ^(b) C_g : gravimetric capacitance; ^(c)CD: current density; ^(d)SR: scan rate; ^(e)ASC: asymmetric supercapacitor; ^(f)NE: negative electrode; ^(g)ED: energy density; ^(h)PD: power density.

Fig. S8 (a) CV curves of the Ni-Tp/PANI electrode at different scan rates in 3 M KOH aqueous solution in the potential window of 0–0.7 V (vs. Hg/HgO). (b) GCD curve of the Ni-Tp/PANI electrode at the current density of 100 mA cm⁻² in the potential window of 0–0.7 V (vs. Hg/HgO). (c) CV curves of the Ni-Tp electrode at different scan rates in 3 M KOH aqueous solution in the potential window of 0–0.6 V (vs. Hg/HgO). (d) GCD curve of the Ni-Tp electrode at the current density of 100 mA cm⁻² in the potential window of 0–0.6 V (vs. Hg/HgO).

Fig. S9 (a) Comparison of CV curves of the as-prepared Ni-Tp and Ni-Tp/PANI electrodes and the bare Ni foam at a scan rate of 30 mV s⁻¹. (b) Comparison of GCD curves of the as-prepared Ni-Tp and Ni-Tp/PANI electrodes and the bare Ni foam at a current density of 50 mA cm⁻².

Fig. S10 (a) CV curves of the activated carbon electrode at different scan rates in 3 M KOH aqueous solution. (b) GCD curves of the activated carbon electrode at different current densities. (c) The gravimetric capacitance of the activated carbon electrode as a function of current density. (d) Cycling performance of the activated carbon electrode at a current density of 8 A g^{-1} (40 mA cm⁻²) in 3 M KOH aqueous solution.

Fig. S11 GCD curves of the prepared activated carbon electrode at the current densities of 20, 30, 35, 40, and 45 mA cm⁻².

Fig. S12 GCD curves of the assembled ASC device at the current densities of 50, 70, 80, 90, and 100 mA cm⁻².

References

- 1 D. Sheberla, J. C. Bachman, J. S. Elias, C. J. Sun, Y. Shao-Horn and M. Dincă, Conductive MOF electrodes for stable supercapacitors with high areal capacitance, *Nat. Mater.*, 2017, **16**, 220–224.
- 2 H. C. Xia, J. N. Zhang, Z. Yang, S. Y. Guo, S. H. Guo and Q. Xu, 2D MOF nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances, *Nano-Micro Lett.*, 2017, 9, 43.
- 3 Q. L. Chen, S. J. Lei, L. F. Chen, P. Q. Deng, Y. H. Xiao and B. C. Cheng, A novel fluffy nanostructured 3D network of Ni(C₇H₄O₅) for supercapacitors, *Electrochim. Acta*, 2017, **230**, 141–150.
- 4 C. Qu, Y. Jiao, B. Zhao, D. C. Chen, R. Q. Zou, K. S. Walton and M. L. Liu, Nickel-based pillared MOFs for high-performance supercapacitors: Design, synthesis and stability study, *Nano Energy*, 2016, 26, 66–73.
- 5 Y. Yan, P. Gu, S. S. Zheng, M. B. Zheng, H. Pang and H. G. Xue, Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors, *J. Mater. Chem. A*, 2016, **4**, 19078–19085.
- J. Xu, C. Yang, Y. F. Xue, C. Wang, J. Y. Cao and Z. D. Chen, Facile synthesis of novel metal-organic nickel hydroxide nanorods for high performance supercapacitor, *Electrochim. Acta*, 2016, 211, 595–602.
- 7 P. Wen, P. W. Gong, J. F. Sun, J. Q. Wang and S. R. Yang, Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density, *J. Mater. Chem. A*, 2015, **3**, 13874–13883.
- 8 P. C. Banerjee, D. E. Lobo, R. Middag, W. K. Ng, M. E. Shaibani and M. Majumder, Electrochemical capacitance of Ni-doped metal organic framework and reduced graphene oxide composites: More than the sum of its parts, *ACS Appl. Mater. Interfaces*, 2015, 7, 3655–3664.
- 9 K. M. Choi, H. M. Jeong, J. H. Park, Y. B. Zhang, J. K. Kang and O. M. Yaghi, Supercapacitors of nanocrystalline metal organic frameworks, *ACS Nano*, 2014, **8**, 7451–7457.
- 10 J. Yang, C. Zheng, P. X. Xiong, Y. F. Li and M. D. Wei, Zn-doped Ni-MOF material with a high supercapacitive performance, *J. Mater. Chem. A*, 2014, **2**, 19005–19010.
- 11 J. Yang, P. X. Xiong, C. Zheng, H. Y. Qiu and M. D Wei, Metal–organic frameworks: A new promising class of materials for a high performance supercapacitor electrode, *J. Mater. Chem. A*, 2014, **2**, 16640–16644.
- 12 Y. L. Gao, J. X. Wu, W. Zhang, Y. Y. Tan, J. Gao, B. H. J. Tang and J. C. Zhao, Synthesis of nickel carbonate hydroxide/zeolitic imidazolate framework-8 as a supercapacitors electrode, *RSC Adv.*, 2014, 4, 36366–36371.
- 13 L. Kang, S. X. Sun, L. B. Kong, J. W. Lang and Y. C. Luo, Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors, *Chin. Chem. Lett.*, 2014, **25**, 957–961.
- 14 C. M Liao, Y. K. Zuo, W. Zhang, J. C. Zhao, B. H. J. Tang, A. M. Tang, Y. H. Sun and J. L. Xu, Electrochemical performance of metal-organic framework synthesized by a solvothermal method for supercapacitors, *Russ. J. Electrochem.*, 2013, 49, 983–986.
- 15 X. H. Xiong, D. Ding, D. C. Chen, G. Waller, Y. F. Bu, Z. X. Wang and M. L. Liu, Threedimensional ultrathin Ni(OH)₂ nanosheets grown on nickel foam for high-performance supercapacitors, *Nano Energy*, 2015, **11**, 154–161.
- 16 L. J. Li, J. Xu, J. L. Lei, J. Zhang, F. McLarnon, Z. D. Wei, N. B. Li and F. S. Pan, A one-step,

cost-effective green method to in situ fabricate Ni(OH)₂ hexagonal platelets on Ni foam as binderfree supercapacitor electrode materials, *J. Mater. Chem. A*, 2015, **3**, 1953–1960.

- 17 H. Chen, L. F. Hu, M. Chen, Y. Yan and L. M. Wu, Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials, *Adv. Funct. Mater.*, 2014, 24, 934–942.
- 18 Z. Tang, C. H. Tang and H. Gong, A high energy density asymmetric supercapacitor from nanoarchitectured Ni(OH)₂/carbon nanotube electrodes, *Adv. Funct. Mater.*, 2012, 22, 1272–1278.
- 19 G. H. Cheng, W. F. Yang, C. Q. Dong, T. Y. Kou, Q. G. Bai, H. Wang and Z. H. Zhang, Ultrathin mesoporous NiO nanosheet-anchored 3D nickel foam as an advanced electrode for supercapacitors, *J. Mater. Chem. A*, 2015, **3**, 17469–17478.
- 20 Z. Y. Lu, Z. Chang, J. F. Liu and X. M. Sun, Stable ultrahigh specific capacitance of NiO nanorod arrays, *Nano Res.*, 2011, 4, 658–665.
- 21 X. Wang, C. Y. Yan, A. Sumboja and P. S. Lee, High performance porous nickel cobalt oxide nanowires for asymmetric supercapacitor, *Nano Energy*, 2014, **3**, 119–126.
- 22 L. Y. Zhang, C. H. Tang and H. Gong, Temperature effect on the binder-free nickel copper oxide nanowires with superior supercapacitor performance, *Nanoscale*, 2014, **6**, 12981–12989.
- 23 G. Q. Zhang, H. B. Wu, H. E. Hoster, M. B. Chan-Park and X. W. Lou, Single-crystalline NiCo₂O₄ nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors, *Energy Environ. Sci.*, 2012, 5, 9453–9456.
- 24 G. Q. Zhang and X. W. Lou, General solution growth of mesoporous NiCo₂O₄ nanosheets on various conductive substrates as high-performance electrodes for supercapacitors, *Adv. Mater.*, 2013, 25, 976–979.
- 25 C. Z. Yuan, J. Y. Li, L. R. Hou, X. G. Zhang, L. F. Shen and X. W. Lou, Ultrathin mesoporous NiCo₂O₄ nanosheets supported on Ni foam as advanced electrodes for supercapacitors, *Adv. Funct. Mater.*, 2012, 22, 4592–4597.
- 26 Q. F. Wang, X. F. Wang, B. Liu, G. Yu, X. J. Hou, D. Chen and G. Z. Shen, NiCo₂O₄ nanowire arrays supported on Ni foam for high-performance flexible all-solid-state supercapacitors, *J. Mater. Chem. A*, 2013, 1, 2468–2473.
- 27 X. Y. Liu, S. J. Shi, Q. Q. Xiong, L. Li, Y. J. Zhang, H. Tang, C. D. Gu, X. L. Wang and J. P. Tu, Hierarchical NiCo₂O₄@NiCo₂O₄ core/shell nanoflake arrays as high-performance supercapacitor materials, ACS Appl. Mater. Interfaces, 2013, 5, 8790–8795.
- 28 S. J. Peng, L. L. Li, H. B. Wu, S. Madhavi and X. W. Lou, Controlled growth of NiMoO₄ nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors, *Adv. Energy Mater.*, 2015, 5, 1401172.
- 29 D. Guo, P. Zhang, H. M. Zhang, X. Z. Yu, J. Zhu, Q. H. Li and T. H. Wang, NiMoO₄ nanowires supported on Ni foam as novel advanced electrodes for supercapacitors, *J. Mater. Chem. A*, 2013, 1, 9024–9027.
- 30 G. J. He, J. M. Li, W. Y. Li, B. Li, N. Noor, K. B. Xu, J. Q. Hu and I. P. Parkin, One pot synthesis of nickel foam supported self-assembly of NiWO₄ and CoWO₄ nanostructures that act as high performance electrochemical capacitor electrodes, *J. Mater. Chem. A*, 2015, **3**, 14272–14278.
- 31 H. M. Wei, J. X. Wang, L. Yu, Y. Y. Zhang, D. W. Hou and T. F. Li, Facile synthesis of NiMn₂O₄ nanosheet arrays grown on nickel foam as novel electrode materials for high-performance supercapacitors, *Ceram. Int.*, 2016, 42, 14963–14969.

- 32 C. Chen, N. Zhang, X. H. Liu, Y. L. He, H. Wan, B. Liang, R. Z. Ma, A. Q. Pan and V. A. L. Roy, Polypyrrole-modified NH₄NiPO₄·H₂O nanoplate arrays on Ni foam for efficient electrode in electrochemical capacitors, *ACS Sustainable Chem. Eng.*, 2016, **4**, 5578–5584.
- 33 S. M. Chen, G. Yang, Y. Jia and H. J. Zheng, Three-dimensional NiCo₂O₄@NiWO₄ core-shell nanowire arrays for high performance supercapacitors, *J. Mater. Chem. A*, 2017, **5**, 1028–1034.
- 34 J. P. Wang, S. L. Wang, Z. C. Huang and Y. M. Yu, High-performance NiCo₂O₄@Ni₃S₂ core/shell mesoporous nanothorn arrays on Ni foam for supercapacitors, *J. Mater. Chem. A*, 2014, 2, 17595– 17601.
- 35 H. H. Huo, Y. Q. Zhao and C. L. Xu, 3D Ni₃S₂ nanosheet arrays supported on Ni foam for highperformance supercapacitor and non-enzymatic glucose detection, *J. Mater. Chem. A*, 2014, **2**, 15111–15117.
- 36 Z. Y. Dai, X. X. Zang, J. Yang, C. C. Sun, W. L. Si, W. Huang and X. C. Dong, Template synthesis of shape-tailorable NiS₂ hollow prisms as high-performance supercapacitor materials, ACS Appl. Mater. Interfaces, 2015, 7, 25396–25401.
- 37 W. Li, S. L. Wang, L. P. Xin, M. Wu and X. J. Lou, Single-crystal β-NiS nanorod arrays with a hollow-structured Ni₃S₂ framework for supercapacitor applications, *J. Mater. Chem. A*, 2016, **4**, 7700–7709.
- 38 J. Wang, D. L. Chao, J. L. Liu, L. Li, L. F. Lai, J. Y. Lin and Z. X. Shen, Ni₃S₂@MoS₂ core/shell nanorod arrays on Ni foam for high-performance electrochemical energy storage, *Nano Energy*, 2014, 7, 151–160.
- 39 Y. H. Li, L. J. Cao, L. Qiao, M. Zhou, Y. Yang, P. Xiao and Y. H. Zhang, Ni–Co sulfide nanowires on nickel foam with ultrahigh capacitance for asymmetric supercapacitors, *J. Mater. Chem. A*, 2014, **2**, 6540–6548.
- 40 W. Kong, C. C. Lu, W. Zhang, J. Pu and Z. H. Wang, Homogeneous core–shell NiCo₂S₄ nanostructures supported on nickel foam for supercapacitors, *J. Mater. Chem. A*, 2015, **3**, 12452–12460.
- 41 J. Pu, T. T. Wang, H. Y. Wang, Y. Tong, C. C. Lu, W. Kong and Z. H. Wang, Direct growth of NiCo₂S₄ nanotube arrays on nickel foam as high-performance binder-free electrodes for supercapacitors, *ChemPlusChem*, 2014, **79**, 577–583.
- 42 H. C. Chen, J. J. Jiang, L. Zhang, D. D. Xia, Y. D. Zhao, D. Q. Guo, T. Qi and H. Z. Wan, *In situ* growth of NiCo₂S₄ nanotube arrays on Ni foam for supercapacitors: Maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance, *J. Power Sources*, 2014, **254**, 249–257.
- 43 L. Mei, T. Yang, C. Xu, M. Zhang, L. B. Chen, Q. H. Li and T. H. Wang, Hierarchical mushroomlike CoNi₂S₄ arrays as a novel electrode material for supercapacitors, *Nano Energy*, 2014, **3**, 36–45.
- 44 W. Hu, R. Q. Chen, W. Xie, L. L. Zou, N. Qin and D. H. Bao, CoNi₂S₄ nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications, *ACS Appl. Mater. Interfaces*, 2014, **6**, 19318–19326.
- 45 K. Zhou, W. J. Zhou, L. J. Yang, J. Lu, S. Cheng, W. J. Mai, Z. H. Tang, L. G. Li and S. W. Chen, Ultrahigh-performance pseudocapacitor electrodes based on transition metal phosphide nanosheets array via phosphorization: A general and effective approach, *Adv. Funct. Mater.*, 2015, 25, 7530– 7538.