Supporting information

Fig. S1 The electrochemical processes of electrode preparation and the photograph of bare NF and C6FN-phy.

Fig. S2 The electrochemical processes of electrode preparation and the photograph of bare NF and N-phy.

Fig. S3 EDS images of C4FN-phy , C5FN-phy , C6FN-phy and C7FN-phy. The EDS analyses were carried out to verify the actual metal proportions deposited on NF surface. As a result, the actual metal atomic ratios almost agree with the original feeding ratios.

Fig. S4 XRD images of the electrodes.

Fig. S6 XPS images of C6FN-phy.

Fig. S7 The OER performances of electrodes and corresponding Tafel slopes.

Fig. S8 Chronopotentiometric curves of C6FN-phy for OER at 10 and 20 mA cm⁻².

Fig. S9 EIS of the electrodes at the applied potential of 1.58 V vs RHE and the equivalent circuit diagram.

Fig. S10 Electrochemical double-layer capacitance measurements of various electrodes at the scan rates of 5, 10, 20, 50 and 100 mV s⁻¹ in 1 M KOH and the linear fitting curves of the charged currents at 0.915 V of each electrode vs. scan rates.

Fig. S11 (a-g) XPS images of C6FN-phy after OER stability measurement.

Fig. S12 The corresponding Tafel slopes of electrodes in Figure 4a.

Fig. S13 (a-g) XPS images of C6FN-phy after HER stability measurement.

The calculation of faradaic efficient:

At first, the chronopotentiometric measurement was applied to the three-electrode system, with the gas-collecting method to gather the volume of the generated O_2 in saturated solution of oxygen. The state equation of gas (PV=nRT, normal temperature and pressure) was used to obtain the molar of actual gas. Comparing to the theoretical O_2 yield, the corresponding faradaic efficient image is shown in Fig. 3d:

Catalysts	Substrate	Tafel slope	Current density (J.	η at correspondi	Stability	Ref
			mA cm ⁻²)	ng J (mV)		
Ni _{0.9} Fe _{0.1} /NC, 1 M KOH	Glass carbon	45	10	330	An increase of 25 mV after 10000 cycles at 10 mA cm-2	1
CoNi(OH) _x , 1 M KOH	Cu film	77	10	280	64% current density retention after 24 hours' electrocatalysis at η = 320 mV	2
NiCo-LDH, 1 M KOH	Carbon paper	40	10	367	An increase of 22 mV after 6 hours' electrocatalysis at 10 mA	3
NiCo₂O₄ nanowires, 1 M KOH	Ti foil	60	10	370	~ 93% current density retention after 20 hours' electrocatalysis at η = 420 mV	4
3D- NA/Ni/NiNPA s, 1 M KOH	Cu-coated polyimide film	96	10	285	94 % current density retention after 175 hours' electrocatalysis at η = 340 mV	5
Ni/Ni₃N, 1 M KOH	NF	60	10	~322	~ 96% current density retention after 12 hours' electrocatalysis at 100 mA cm ⁻²	6
Ni ₂ P, 1 M KOH	GC	59	10	290	An increase of 10 mV after 10 hours' electrocatalysis at 10 mA cm ⁻²	7
ECT-Co _{0.37} Ni _{0.26} Fe _{0.37} O, 1 M KOH	carbon fiber cloth	37.6	200	293	~ 95% current density retention after 100 hours' electrocatalysis at 20 mA cm ⁻²	8
NiFe/NF, 1 M KOH	NF	28	80 100	270 370	~ 100% current density retention after 10 hours' electrocatalysis at 100 mA cm ⁻²	9
NiFe films, 1 M NaOH	NF	-	100	300	~ 100% current density retention after 72 hours' electrocatalysis at 100 mA cm ⁻²	10
NiS 1 M KOH	NF	89	50	335	~ 100% current density retention after 35 hours' electrocatalysis at 13 mA cm ⁻²	11
NiSe 1 M KOH	NF	64	100	314	~ 99% current density retention after 12 hours' electrocatalysis at 100 mA cm ⁻²	12
FeOOH/Co/Fe OOH HNTAs 1 M NaOH	NF	32	21 91 199	250 300 350	anodic polarzation tests at current densities of 20, 50, 100, and 200 mA cm ⁻² for 50 h, showing that the overpotentials remain unchange	13
NiP	NF	23	191	350	From 1.33V gradually increases to	14

Table S1. Comparisons of the various OER catalysts in alkaline electrolyte according to the reports and this paper.

					1.45 V vs. RHE after 0.2 h, and then remains fairly stable at this potential up to 26 h	
CN-phy	NF	86	150 200 250	316 332 349	98% current density retention after 10 hours' electrocatalysis at 100 mA cm ⁻²	This work
C6FN-phy	NF	24	150 200 250 300	281 285 288 291	~ 96% and 100%current density retention after 70 and 32 hours' electrocatalysis at 200 and 100mA cm ⁻²	This work
FN-phy	NF	75	150 200 250	319 332 344	~ 99% current density retention after 10 hours' electrocatalysis at 100 mA cm ⁻²	This work
N-phy	NF	60	150 200	343 354	~ 99% current density retention after 10 hours' electrocatalysis at 100 mA cm ⁻²	This work

Catalyst	Substrate	η@10 mA cm ⁻² (mV)	Current density (J, mA cm ⁻²)	η at correspondin g J (mV)	Reference
FeNi₃N/NF	NF	390	~90	770	15
Ni–P foam	NF	410	100	820	14
NiSe/NF	NF	400	~60	770	12
NiCo ₂ S ₄ NW	NF	400	~70	770	16
Ni _{2.3%} -CoS ₂ /CC	Carbon cloth	430	60	770	17
NiCoP/rGO	-	360	60	670	18
C6FN-phy	NF	460	100	660	This work

Table S2. Comparisons of the two-electrode configuration performance according to the reports and this paper in 1 M KOH.

References:

- 1. X. Zhang, H. Xu, X. Li, Y. Li, T. Yang and Y. Liang, ACS Catalysis 2015, 6, 580-588.
- 2. S. Li, Y. Wang, S. Peng, L. Zhang, A. M. Al Enizi, H. Zhang, X. Sun and G. Zheng, *Advanced Energy Materials*, 2016, **6**, 1501661-1501667.
- 3. H. Liang, F. Meng, M. Cabán-Acevedo, L. Li, A. Forticaux, L. Xiu, Z. Wang and S. Jin, *Nano letters*, 2015, **15**, 1421-1427.
- Z. Peng, D. Jia, A. M. Al Enizi, A. A. Elzatahry and G. Zheng, *Advanced Energy Materials*, 2015, 5, 1402031-1402037.
- 5. P. Li, Z. Jin, R. Wang, Y. Jin and D. Xiao, *Journal of Materials Chemistry A*, 2016, **4**, 9486-9495.
- 6. M. Shalom, D. Ressnig, X. Yang, G. Clavel, T. P. Fellinger and M. Antonietti, *Journal of Materials Chemistry A*, 2015, **3**, 8171-8177.
- 7. L.-A. Stern, L. Feng, F. Song and X. Hu, *Energy & Environmental Science*, 2015, **8**, 2347-2351.
- 8. W. Chen, H. Wang, Y. Li, Y. Liu, J. Sun, S. Lee, J.-S. Lee and Y. Cui, *ACS central science*, 2015, **1**, 244-251.
- 9. X. Lu and C. Zhao, *Nature communications*, 2015, **6**, 6616-6623.
- 10. T. T. Hoang and A. A. Gewirth, ACS Catalysis, 2016, 6, 1159-1164.
- 11. W. Zhu, X. Yue, W. Zhang, S. Yu, Y. Zhang, J. Wang and J. Wang, *Chemical Communications*, 2016, **52**, 1486-1489.
- C. Tang, N. Cheng, Z. Pu, W. Xing and X. Sun, *Angewandte Chemie International Edition*, 2015, 54, 9351-9355.
- 13. J. X. Feng, H. Xu, Y. T. Dong, S. H. Ye, Y. X. Tong and G. R. Li, *Angewandte Chemie*, 2016, **128**, 3758-3762.
- 14. X. Wang, W. Li, D. Xiong and L. Liu, *Journal of Materials Chemistry A*, 2016, **4**, 5639-5646.
- 15. B. Zhang, C. Xiao, S. Xie, J. Liang, X. Chen and Y. Tang, *Chem. Mater*, 2016, **28**, 6934-6941.
- 16. A. Sivanantham, P. Ganesan and S. Shanmugam, *Advanced Functional Materials*, 2016, **26**, 4661-4672.

- 17. W. Fang, D. Liu, Q. Lu, X. Sun and A. M. Asiri, *Electrochemistry Communications*, 2016, **63**, 60-64.
- 18. J. Li, M. Yan, X. Zhou, Z. Q. Huang, Z. Xia, C. R. Chang, Y. Ma and Y. Qu, *Advanced Functional Materials*, 2016, **26**, 6785-6796.