Supplementary Information

Efficient Removal of Pb (II) from Water by Magnetic Fe₃S₄/reduced Graphene Oxide Composites

Long Kong, Zhichun Li, Xueqiong Huang, Shouqiang Huang, Hua Sun, Min Liu, and Liang Li*

School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China E-mail: liangli117@sjtu.edu.cn; Tel: +86 21 54747567

Supplementary information contains 12 pages, 11 figures, and 4 tables.

Adsorption model:

All the adsorption kinetics data were fitted with two different kinetic models, pseudofirst-order model and pseudo-second- order model, expressed as follows: ¹

$$\ln\left(q_e - q_t\right) = \ln q_e - k_1 t \tag{1}$$

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e} t$$
(2)

Where q_t and q_e are the amount of adsorption at any time t (min) and equilibrium (mg g⁻¹). k_1 (min⁻¹) and k_2 (g (mg·min)⁻¹) denote the rate constant of pseudo-first-order and pseudo-second-order sorption, respectively.

The Langmuir and Freundlich isotherm model were employed to simulate the adsorption isotherm data and can be described as: ²

$$\frac{C_e}{q_e} = \frac{C_e}{q_m} + \frac{1}{q_m K_L} \tag{3}$$

$$lnq_e = lnK_F + \frac{1}{n}lnC_e \tag{4}$$

where C_e is the equilibrium concentration in the liquid phases (mg L⁻¹), q_m represent the maximum adsorption capacity (mg g⁻¹), respectively. K_L and K_F are Langmuir sorption constant related to the affinity parameter of adsorbent and Freundlich adsorption capacity, respectively. 1/n refers to the Freundlich adsorption intensity parameter.

The distribution ratio (K_d) was obtained from the following equation: ³

$$K_{d} = \frac{(C_{0} - C_{e})_{V}}{C_{0} m}$$
(5)

Where C_0 is the initial concentration of Pb(II) (mg/L), V denotes the volume of the solution (mL), m is the weight of adsorbent (g).

Fig S1 XRD patterns of Fe_3O_4/rGO after the sulfuration reaction using (a) oleylamine and (b) 1-butylamine as solvent for sulfur powders.

Fig S2 (a) TEM images of Fe_3S_4/rGO after the sulfuration over 5 min, (b) EDX results of selected areas of Fe_3S_4/rGO .

Fig S3 TGA curves of GO, Fe₃O₄/rGO, and Fe₃S₄/rGO measured from 25 to 800 °C in air atmosphere.

The content of Fe_3O_4 and Fe_3S_4 in the resultant Fe_3O_4/rGO or Fe_3S_4/rGO composites was confirmed by TGA analysis. As shown in Fig S3, the residual weight of Fe₃O₄/rGO was 86.13%, 78.38%, and 69.35% for Fe₃O₄/rGO-10%, Fe₃O₄/rGO-20%, and Fe₃O₄/rGO-30% after the samples was heated to 800 in air.^[4] It was pointed out that the Fe₃O₄ phase in the Fe₃O₄/rGO can be oxidized by air to Fe₂O₃. Based on the weight of Fe₂O₃ after 800 °C, the Fe₃O₄ content in Fe₃O₄/rGO-10%, Fe₃O₄/rGO-20%, and Fe₃O₄/rGO-30% was calculated to be 83.25%, 75.77%, and 67.21%. Accordingly, the content of rGO was about 16.75 wt%, 24.23 wt%, and 32.79 wt%, respectively. As for Fe₃S₄/rGO, it exhibited a different thermal oxidative degradation features since Fe₃O₄ and Fe₃S₄ coexisted in the composites. Under test conditions (25-800 °C, air flow), the weight loss of Fe₃S₄/rGO corresponds to the oxidation of Fe₃O₄ and Fe₃S₄ and the decomposition of rGO, leaving the final products as Fe₂O₃. The remaining weight of Fe₃S₄/rGO-10%, Fe₃S₄/rGO-20%, and Fe₃S₄/rGO-30% composites was 72.21%, 66.77%, and 58.89%, respectively. The difference of residual weight between Fe₃O₄/rGO and its corresponding Fe₃S₄/rGO composite was assigned to the weight loss in oxidation process of Fe₃S₄. Therefore, the Fe₃S₄ content was calculated to be about 61.89%, 51.99%, and 47.59% in Fe₃S₄/rGO-10%, Fe₃S₄/rGO-20%, and Fe₃S₄/rGO-30%. The accurate contents of Fe₃O₄ and Fe₃S₄ in the composites were listed in Table S2.

Fig S4 Nitrogen adsorption-desorption isotherms of Fe_3O_4/rGO and Fe_3S_4/rGO . Inset: BJH pore size distribution (mainly 3-4 nm) of Fe_3S_4/rGO .

Fig S5 TEM images of (a) $Fe_3O_4/rGO-10\%$ and (b) $Fe_3S_4/rGO-10\%$.

Fig S6 Test of pseudo-first-order model for adsorption of Pb (II) on different adsorbents. The symbols are experimental data and the solid lines represent the fitted curves.

Fig S7 Fe release kinetics of Fe_3S_4/rGO in the adsorption process toward Pb (II). Experimental conditions: initial Pb (II) concentration 50 mg L⁻¹ 100 mL, sorbent 25 mg, pH 6, temperature 25 °C. The dash line represented the bank samples, Fe_3S_4/rGO solution without the addition of Pb (II).

Fig S8 The fittings of Langmuir model and Freundlich model for the adsorption of Pb (II) by GO (a), Fe_3O_4/rGO (b), $Fe_3S_4/rGO-10\%$ (c), $Fe_3S_4/rGO-20\%$ (d), and $Fe_3S_4/rGO-30\%$ (e). The symbols are experimental data; the solid lines represent the fitted curves.

Fig S9 Adsorption performance of GO, Fe_3O_4/rGO , and Fe_3S_4/rGO composites toward (a) Hg (II) and (b) Cd (II). Experimental conditions: initial concentration (60 mg L⁻¹ Hg (II), 50 mg L⁻¹ Cd (II)) 100 mL, sorbent 25 mg, pH 6, contact time 24 h, temperature 25 °C.

Fig S10 Column adsorption of Pb (II) by Fe_3S_4/rGO from a synthetic Pb (II) feeding solution.

Fig S11 XPS spectra of S 2p for Fe_3S_4/rGO before and after Pb (II) adsorption.

Table S1 Element content of the Fe_3S_4/rGO sample from the XPS analysis.

Name	Pos.	FWHM	Area	At%	Wt%
C 1s	284.82	1.44	10231.13	50.87	29.80
Fe 2p	711.18	4.55	25750.38	12.03	32.76
S 2p	161.33	2.32	5236.89	10.84	10.84
O 1s	531.63	3.19	14818.42	26.26	26.26

Sample	$Fe_{3}O_{4}\left(wt\%\right)$	$\operatorname{Fe}_{3}S_{4}\left(\mathrm{wt}^{\mathrm{o}}_{\mathrm{o}} ight)$	rGO (wt%)
Fe ₃ O ₄ /rGO-10%	83.25		16.75
Fe ₃ O ₄ /rGO-20%	75.77		24.23
Fe ₃ O ₄ /rGO-30%	67.21		32.79
Fe ₃ S ₄ /rGO-10%	21.36	61.89	16.75
Fe ₃ S ₄ /rGO-20%	23.78	51.99	24.23
Fe ₃ S ₄ /rGO-30%	19.62	47.59	32.79

Table S2 Contents of the Fe_3O_4/rGO and Fe_3S_4/rGO samples from the TGA analysis.

 Table S3 Adsorption isotherm parameters for Langmuir and Freundlich model of Pb (II) adsorption.

A de sub-sut	Langmuir model			Freundlich model		
Adsorbent	$Q_m (mg g^{-1})$	$K_L(L mg^{-1})$	R ²	$K_F (mg g^{-1})$	n	R ²
GO	163.93	0.036	0.984	26.16	3.33	0.849
Fe ₃ O ₄ /rGO	106.27	0.028	0.984	7.48	2.18	0.844
Fe ₃ S ₄ /rGO-10%	279.33	0.036	0.964	26.36	2.47	0.935
Fe ₃ S ₄ /rGO-20%	285.71	0.046	0.976	26.65	2.36	0.950
Fe ₃ S ₄ /rGO-30%	255.51	0.029	0.948	22.71	2.48	0.924

Table S4 Comparison of Pb (II) adsorption capacities of various adsorbents

	Sorption capacity		Dof	
Adsorbent	(Q _{max} mg g ⁻¹)	Adsorption conditions	Refs	
Graphene nanosheets	35.46	рН 4, 303К	5	
Graphene oxide	152.71	рН 4.5, 298К	6	
Fe ₃ O ₄	52.94	рН 6, 298К	7	
Amorphous Fe ₃ O ₄	22.83	pH = 5 ± 0.2, 303K	8	
Porous NiFe ₂ O ₄	48.98	рН 5, 308К	9	
	100.20	room temperature	10	
Fe ₂ O ₃ -APTES-EDTA	100.20	(295-298K).		
Fe ₃ O ₄ -SiO ₂ -TETA	62.16	pH 7, room temperature	11	
multiwall carbon nanotubes/Fe ₃ O ₄ (MWCNTs/	41.77	рН 5.3, 303К	12	
Fe ₃ O ₄)				
MWCNTs/Fe ₃ O ₄ -NH ₂	75.02	рН 5.3, 303К	12	
Iron oxides	5.60	рН 5.5, 293К	13	
MWCNTs/iron oxides	9.85	рН 5.5, 293К	13	
MWCNTs/iron oxides/cyclodextrin	12.29	рН 5.5, 293К	13	
Thiol-functionalized magnetic mesoporous silica	91.50	рН 6.5, 298К	14	
Graphene-Fe ₃ O ₄ composites	69.00	рН 5, 300К	15	
Magnetic chitosan/graphene oxide composites	76.94	рН 5, 303К	16	
Amino functionalized Fe ₃ O ₄ /	27.05		17	
graphenes composite	27.95	pH 6-7, room temperature	17	
Layered Double Hydroxide Intercalated with			18	
MoS ₄ ^{2–} Ions	288.90	pH 5.1, room temperature		
Fe ₃ S ₄ hollow spheres	92.10	NA	19	
Fe ₃ S ₄ /rGO-10%	279.33			
Fe ₃ S ₄ /rGO-20%	285.71	рН 6, 298К	This work	
Fe ₃ S ₄ /rGO-30%	255.51			

References:

[1] Ch. Ling, F. Q. Liu, C. Xu, T. P. Chen, A. M. Li, *ACS Appl. Mater. Interfaces*, 2013, **5**, 11808–11817.

[2] Y. H. Li, Q. J. Du, X. D. Wang, P. Zhang, D. C. Wang, Z. H. Wang, Y. Z. Xia, J. Hazard. Mater, 2010, 183, 583–589.

[3] Zhang, Q.; Du, Q.; Hua, M.; Jiao, T.; Gao, F.; Pan, B. *Environ. Sci. Technol.* 2013, **47**, 6536–6544.

[4] Z. S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng, and K. Müllen, J. Am. Chem. Soc., 2012, 22, 9082-9085.

[5] Z. H. Huang, X. Zheng, W. Lv, M. Wang, Q. H. Yang, F. Kang, *Langmuir*, 2011, **27**, 7558-7562.

[6] K. Yang, B. Chen, X. Zhu, and B. Xing, Environ. Sci. Technol., 2016, 50, 11066-11075.

[7] S. Rajput, C. U. Pittman, and D. Mohan, J. Colloid. Interf. Sci., 2016, 468, 334-346.

[8] C. Zhang, Z. Yu, G. Zeng, B. Huang, H. Dong, J. Huang, Z. Yang, J. Wei, L. Hu, and Q. Zhang, *Chem. Eng. J.*, 2016, **284**, 247-259.

[9] Reddy, D. H. K.; Lee, S.M., Ind. Eng. Chem. Res. 2013, 52, 15789-15800.

[10] Y. Huang, and A. A. Keller, Water Res, 2015, 80, 159-168.

[11] M.E. Mahmoud, M.S. Abdelwahab, and E.M. Fathallah, Chem. Eng. J., 2013, 223, 318-327.

[12] L. Q. Ji, L. C. Zhou, X. Bai, Y. M. Shao, G. H. Zhao, Y. Z. Qu, C. Wang and Y. F. Li, *J. Mater. Chem.*, 2012, 22, 15853–15862.

[13] J. Hu, D. D. Shao, C. L. Chen, G. D. Sheng, J. X. Li, X. K. Wang and M. Nagatsu, J. Phys. Chem. B, 2010, 114, 6779–6785.

[14] G. Li, Z. Zhao, J. Liu, G. Jiang, J. Hazard. Mater., 2011, 192, 277-283.

[15] C. Santhosh, P. Kollu, S. Doshi, M. Sharma, D. Bahadur, M. T. Vanchinathan, P. Saravanan, B. S. Kim, and A. N. Grace, *RSC Adv.*, 2014, 4, 28300-28308.

[16] L. Fan, C. Luo, M. Sun, X. Li, H. Qiu, Colloids Surf., B, 2013, 103, 523-529.

[17] Guo, X. Y.; Du, B.; Wei, Q.; Yang, J.; Hu, L. H.; Yan, L. G.; Xu, W. Y. *J. Hazard. Mater.* 2014, **278**, 211.

[18] L. Ma, Q. Wang, S. M. Islam, Y. Liu, S. Ma, and M. G. Kanatzidis, *J. Am. Chem. Soc.*, 2016, *138*, 2858-2866.

[19] J. Zheng, Y. Cao, C. Cheng, C. Chen, R. W. Yan, H. X. Huai, Q. F. Dong, M. S. Zheng and C. C. Wang, *J. Mater. Chem. A.*, 2014, 2, 19882–19888.