Electronic Supplementary Information

Pd-Impregnated NiCo₂O₄ nanosheets/porous carbon composites as a free-standing and binder-free catalyst for a high energy lithium–oxygen battery

Daniel A. Agyeman^{\dagger}, Mihui Park^{\dagger} and Yong-Mook Kang^{*}

Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.

*E-mail: dake1234@dongguk.edu

⁺These authors contributed equally to this work

Fig. S1 FESEM images of as-prepared NiCo₂O₄ nanosheets directly grown on both sides of GDL as a result of vertically immersion of GDL in reaction solution

Fig. S2 FESEM images of NiCo₂O₄ nanosheets grown on two substrates (i.e. Nickel foam and GDL) illustrating the compatibility of nanosheets on various substrates

Fig. S3 FESEM images of $NiCo_2O_4$ nanosheets assembled into flower-like morphology, which is grown without

substrate

(a) NCO@GDL

Fig. S4 TEM images of $NiCo_2O_4$ nanosheets before and after Pd deposition

Fig. S5 FESEM-EDS elemental mapping of $Pd@NiCo_2O_4/GDL$ showing the various elements present in the composition

Fig. S6 HAADF-STEM image and point EDX spectra showing the existence of Pd nanoparticles adsorbed onto the NiCo₂O₄ nanosheets

Fig. S7 XPS analysis of (a) Ni 1s and (b) Co 2p spectra demonstrating the change of oxidation states before and after Pd introduction

Fig. S8. Nitrogen adsorption-desorption isotherms and Pore size distributions of (a & c) $Pd@NiCo_2O_4/GDL$ and (b & d) $NiCo_2O_4/GDL$

Fig. S9 Cyclic Voltammetry (CV) curves of Li-O₂ cells with (a) Pd@NiCo₂O₄/GDL and (b) NiCo₂O₄/GDL at the scan rate of $0.2mVs^{-1}$

Fig. S10 Nyquist plots of the $Li-O_2$ cells containing $NiCo_2O_4/GDL$ cathode

Fig. S11 Discharge curve of bare GDL substrate

	Discharge	Cut-Off capacity	Discharge	Reference
Sample Name	capacity(mAhg-	(mAhg ⁻¹)/ Cycling	product	

	¹⁾ /current density	stability	morphology	
Au@NiCo ₂ O ₄ /3D-G	1275 / 42.5mAg ⁻¹	500 / 40	Flakes	23
Flower-like NiCo ₂ O ₄	3163 / 0.08mAcm ⁻¹	500 / 60	Thin film	22
microsphere				
Mesoporous spinel	7309 / 0.2mAcm ⁻¹	1000 / 35	precipitate	14
NiCo ₂ O ₄				
3D Foam-like NiCo ₂ O ₄	10137 / 200mAg ⁻¹	1000 / 80	precipitate	13
Porous NiCo ₂ O ₄	6000 / 100mAg ⁻¹	1000 / 110	toroidal	44
nanotube				
Macroporous/mesoporou	11860 / 200mAg ⁻¹	500 / 50	plates	45
s NiCo ₂ O ₄ nanosheets				
Pd@NiCo ₂ O ₄ /GDL	4000 / 200mAg ⁻¹	1000 / 100	Flower-like	This work

Table S1 Comparison between the electrochemical properties of various NiCo₂O₄ based electrodes for Li-O₂ batteries

References

- 13. F. Deng, L. Yu, G. Cheng, T. Lin, M. Sun, F. Ye and Y. Li, J. Power Sources, 2014, 251, 202–207.
- 14. H. Guo, L. Liu, T. Li, W. Chen, J. Liu, Y. Guo and Y. Guo, Nanoscale, 2014, 6, 5491-5497.
- 22. Z. Li, X. Li, L. Xiang, X. Xie, X. Li, D.-R. Xiao, J. Shen, W. Lu, L. Lu and S. Liu, J. Mater. Chem. A, 2016, 4, 18335–18341.

23. H.-Q. Wang, J. Chen, S.-J. Hu, X.-H. Zhang, X.-P. Fan, J. Du, Y.-G. Huang and Q.-Y. Li, RSC Adv., 2015, 5, 72495–72499.

44. L. Li, L. Shen, P. Nie, G. Pang, J. Wang, H. Li, S. Dong and X. Zhang, J. Mater. Chem. A, 2015, 3, 224309–224314.

45. B. Sun, X. Huang, S. Chen, Y. Zhao, J. Zhang, P. Munroe and G. Wang, J. Mater. Chem. A, 2014, 2, 12053–12059