Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information (ESI)

Pore-surface Engineering in Covalent Triazine Frameworks for Low-pressure

CO2 Capture: Pre-designable Strategy or Post-synthesis Modification

Yu Fu,^a Zhiqiang Wang,^a Xianbiao Fu,^{a,b} Jun Yan, ^a Cheng Liu^c, Chunyue Pan,^a Guipeng Yu*^{a,c}

Table of content

1.Th	e synthetic process	2
2. Ma	aterials and Method	5
3. Inf	frared spectroscopy	7
4. An	alysis of FTIR integration for appended functional groups	8
5.Ra	man scattering	11
6. XP	PS analysis	11
7.Ele	emental analysis	12
8.1H	NMR of monomers	13
9. ¹³ C	C NMR of monomers	14
10.	XRD analysis	16
11.	Thermo-gravimetric analysis	
12.	Morphology analysis by SEM and TEM	19
13.	Gas CO ₂ sorption isotherms of CTF-CSUs at 273K and 298K	20
14.	Gas adsorption selectivity study	
15.	References	

1. The synthetic process

Scheme S1 the synthetic routes of monomers and polymers

Ethyl-2-(3,6-dibromo-9H-carbazol-9-yl)acetate (EDCA):

3,6-Dibromo-9H-carbazole (3.25 g, 10 mmol), dry K₂CO₃ (3.73 g, 27 mmol) and tetrabutyl ammonium bromide (322 mg, 1mmol) were dissolved in dry DMF (50 mL). The mixture was stirred for 30min at 50 °C before ethyl bromoacetate (3.3 mL, 30 mmol) was added. The mixture was stirred at 90°C for 12 h. After cooling to room temperature the mixture was poured into ice water (200mL) and extracted with CHCl₃. The organic layer was washed with water and dried with MgSO₄. Afterward, the solvent was removed by reduced pressure and the crude product was purified by silica column chromatography to give a white crystal (3.45 g, 84%). ¹H NMR (400MHz, CDCl₃, ppm): δ = 8.18 (s, 2 H), 7.60-7.58 (d, *J*=8.0 Hz, 2 H), 7.24-7.23 (d, *J*=8.0 Hz, 2 H), 4.97 (s, 2 H), 4.24-4.20 (q, *J*=8.0 Hz, 2 H), 1.26-1.32(t, *J*=4.0 Hz, 3 H)

Ethyl-2-(3,6-Dicyano-9H-carbazol-9-yl)acetate:

Amixtureof ethyl-2-(3,6-dibromo-9H-carbazol-9-yl) acetate (8.22 g, 20 mmol), cuprous cyanide(8.95 g, 100 mmol) and 18-Crown-6 (180 mg) was stirred for 48 hin dry DMF(100 mL) at 150 °C under N₂ atmosphere, and then the mixture was poured into 1L hartshorn(ammonia/distilled water = 1:1 (V/V)) and stirred for another 1 h. The brown solid was collected by filtration, washed with water (10 mL*3) and ethanol(10 mL*3), and then dried. The crude product was purified by silica column chromatography (dichloromethane/petroleum ether = 1:2) to give a white solid (3.3 g, 82 %).¹H NMR (500 MHz, CDCl₃, ppm): δ = 8.45 (s, 2 H), 7.84-7.82 (d, *J*=10.0 Hz, 2 H), 7.45-7.48 (d, *J*=10.0 Hz, 2 H), 5.09 (s, 2 H), 4.29-4.25 (q, *J*=10.0 Hz, 2 H),

1.30-1.27 (t, J=5.0 Hz, 3 H).

2-(3,6-Dicyano-9H-carbazol-9-yl) acetic acid:

Ethyl-2-(3,6-dicyano-9H-carbazol-9-yl) acetate (3.05 g, 10 mmol) was dissolved in tetrahydrofuran (60 mL) and distilled water (60 mL). The mixture was stirred for 2 h at 25 °C, and then the aqueous LiOH (15 mL, 1 molL⁻¹) solution was added dropwise and stirredfor 3 h and then the pH of the solution was adjusted to 7 with the aqueous hydrochloric acid (10 mL, 1molL⁻¹). The residue was concentrated remove a majority of organic solvents, after filtrated and washed with water (10 mL*3) and ethanol (10 mL*3), and then dried(2.75 g, 74 %).¹H NMR (400 MHz, DMSO): δ (ppm) 8.851 (s, 2 H), 7.947-7.969 (d, *J*=8.8 Hz, 2 H), 7.813-7.834 (m, *J*=8.8 Hz, 2 H), 5.165 (s, 2 H), 9.594 (s, 1 H).

2-(3,6-Dicyano-9H-carbazol-9-yl)acetohydrazide:

Ethyl-2-(3,6-dibromo-9H-carbazol-9-yl) acetate (3.03 g, 10 mmol) was dissolved in ethanol (100 mL), The mixture was stirred for 30 min at 80 °Cunder N₂ atmosphere, and stirred for another 24 h after the addition of hydrazine hydrate (8 mL). The maple solid was collected by filtration, washed with distilledwater(10 mL*3) and hot ethanol(10 mL*3), and then dried. The crude product was purified by silica column chromatography (dichloromethane/petroleum ether = 1:2) to give a maple solid(2.51 g, 87 %).¹H NMR (400 MHz, DMSO): δ (ppm) 8.837 (s, 2 H), 7.890-7.912 (d, *J*=8.8 Hz, 2 H), 7.736-7.757 (d, *J*=8.4 Hz, 2 H), 4.973 (s, 2 H), 7.956 (s, 1 H) ,1.390-1.398 (d, *J*=3.2 Hz, 2 H).

CTF-CSU20:

CTF-CSU20 was synthesized by heating a mixture of the ethyl-2-(3,6-dicyano-9H-carbazol- 9yl)acetate (1.0 g, 3.3 mmol) and $ZnCl_2$ (4.5 g, 33 mmol) in a quartz ampule (3×10 cm). The tube was evacuated to a high vacuum and then sealed rapidly. Following by a temperature program (350/10h, 400°C/80 h), the quartz tube was cooled down to 25 °C. After cooling, the homogenously brown-black block of salt and product was ground and was stirred for overnight in boiled distilled water to dissolve the salt. The product was washed successively with water (15 mL*3) and methyl alcohol(15 mL*3), followed by Soxhlet extraction overnight using acetone, methyl alcohol and hexane as eluting solvent sequentially and then dried. Yield: 90%.

CTF-CSU36@post:

CTF-CSU20 (1 g) was dispersed in100 mL hydrochloric acid (1 mmolL⁻¹) stirred for 24 h at 100 °C. The resulting black powder was filtered, washed successively with water(15 mL*3) and ethanol(15 mL*3)and dried. Yield: 90 %.

CTF-CSU37@post:

CTF-CSU20 (1 g) was dispersed in ethanol (120 mL) and stirredtheCTF-CSU20for 30min at 80 °Cunder N2 atmosphere, and then hydrazine hydrate (3 mL) was added and stirred for another 12 h. The reaction mixture was filtered, and washed successively with water(15 mL*3) and ethanol(15 mL*3)and dried. Yield: 92 %.

CTF-CSU36@pre:

The synthesis method of CTF-CSU36@pre was almost the same as that for CTF-CSU20. Yield: 92 %.

CTF-CSU37@pre:

The synthesis method of CTF-CSU37@pre was almost the same as that for CTF-CSU20. Yield: 91 %.

Scheme S2 Proposed schematic illustration of the trimerization of carbazole based nitriles in molten ZnCl2

2. Materials and Method

3,6-Dibromo-9H-carbazole, ethyl bromoacetate and Copper(I) cyanidewas purchased from Alfa Aesar Chemical Inc. and used as received. 18-crown-6 and tetrabutyl ammonium bromide was purchased fromAladdin Chemical Inc. and used as received. ZnCl₂ was refluxed over SOCl₂ and filtered justbefore use. Unless otherwise specified, all other solvents and reagents were purchased fromEnergy Inc. and used as received.

Fourier transform infrared spectroscopy (FTIR) was collected with a VARIAN 1000 FTIR(scimitar series) spectrometer in the 400-4000 cm⁻¹ region.Samples were prepared by dispersing the complexes in KBr and compressing the mixtures to form disks. Samples were mounted on a sample holder and measured using Cu Ka radiation with a theta range of 5-80. Thermo-gravimetric analysis (TGA) was performed at a heating rate of 10K/min under N₂ atmosphere using a PERKIN ELMER TGA7. NMR data were collected on a Bruker 400MHz spectrometer at 25°C, using tetramethylsilane as an internal reference.For scanning electron microscopy (SEM) imaging, samples were prepared by dispersing the material onto a sticky carbon surface attached to a flat aluminum sample holder. The samples were then coated with gold at a pressure of 1x10⁻⁵mbar under a nitrogen atmosphere for 120 seconds before imaging. Images were taken on a Quanta-200 Scanning Electron Microscope. High-resolution Transmission electron microscopy (HRTEM) was performed on a Phillips CM 200 FEG electron micro-scope equipped with a field emission gun. Powder X-ray diffraction data were collected on a PanalyticalX'pert pro multipurpose diffractometeroperated at 40 kV and 40 mA with Cu Kradiation (step size 0.017S, step time:10.34 s). The gas adsorption-desorption isotherms were performed on a Micromeritics ASAP 2020 analyzer. N₂ adsorption-desorption measurements were carried out at 77K and 273 K, CO₂ adsorption-desorption isotherms were collected at 273K and 298 K, respectively. High purity gas (99.999 %) was used for the adsorption experiments. Prior to measurements, the samples were degassed at 180°C under high vacuum for 12 h. Liquid nitrogen bath and an ice-water bath equipped with a temperature sensor were utilized to control the temperature at 77K, 273K, and 298K, respectively. The apparent surfaces areas (BET) for N₂ were calculated using the Brunauer-Emmett-Teller (BET) model range from 0.01 to 0.1 bar for three samples. Microporous volumes were calculated using single-point measurements at P/P₀= 0.1, while the total porous volumes were obtained at P/P₀= 0.99. Pore size distributions were derived from the N₂ adsorption isotherms using the Non-local density functional theory (NLDFT). CO₂ adsorption isotherms were measured at 273 and 298 K up to 1 bar.

Entry	Sample name	ZnCl ₂ (mol equiv)	Time	Temp.	$\mathbf{S}_{\text{BET}}^{a}$	CO ₂ uptake ^b	
			(h)	(°C)	$(m^2 g^{-1})$	(wt%)	
1	CTF-CSU20@1	1	10/20	350/400	251	n.m. ^c	
2	CTF-CSU20@2	1	10/40	350/400	476	4.5	
3	CTF-CSU20@3	1.5	10/40	350/400	569	4.9	
4	CTF-CSU20@4	1	10/80	350/400	952	11.8	
5	CTF-CSU20@5	1	10/20/20	350/400/600	1124	12.1	

Tab. S1. Reaction Conditions and Porosity of CTF-CSU20 samples

 $^{\rm a}$ Surface area determined by the BET method ; $^{\rm b}\text{CO}_2$ uptake measured at 273 K and 1 bar. $^\circ$ not measured.

3. Infrared spectroscopy

Fig.S2 FT-IR spectra of CTF-CSU20, CTF-CSU36@post and CTF-CSU36@pre

Fig.S3 FT-IR spectra of CTF-CSU20, CTF-CSU37@post and CTF-CSU37@pre

4. Analysis of FTIR integration for appended functional groups

Fig.S4 Standard curves of FT-IR spectra using KSCN as an external reference (EDCA: Ethyl-2-(3,6dibromo-9H-carbazol-9-yl)acetate)

Fig.S5 FT-IR spectra ofethyl-2-(3,6-dibromo-9H-carbazol-9-yl)acetate (EDCA) with different content of KSCN

Fig.S6 FT-IR spectra of CTF-CSU20, CTF-CSU36@post, CTF-CSU36@preCTF-CSU36@post and CTF-CSU36@pre mixing with KSCN

polymenzation utilizing pre-designable strategy of post-synthesis modification								
Sample	CN conversion ^a	C=O ^b	-CH ₂ , -CH ₃ ^c	-COOH	-CONHNH ₂			
	(mol%)	(mol%)	(mol %)	(mol %)	(mol %)			
EDCA	0	100	100	0	0			
CTF-CSU20	99.3	75.5	74.9	0	0			
CTF-CSU36@pre	97.4	65.1	0	65.6	0			
CTF-CSU36@post	99.3	73.2	2.1	71.8 ^d	0			
CTF-CSU37@pre	98.9	54.8	0	0	54.1			
CTF-CSU37@post	99.3	69.3	4.4	0	68.8 ^e			

Tab. S2 Analysis of FTIR integration for residual appended functional groups after polymerization utilizing pre-designable strategy or post-synthesis modification

 ^{a}CN conversion was calculated by the following equation, [CN conversion]=100*A [CN_{EDCA}]

A'[CN_{SCN-}]/A'[CN] A[CN_{SCN-}], where A[CN_{EDCA}] refers to the CN band intensity of EDCA in a mixture of EDCA/KSCN ,A[CN_{SCN-}] refers the CN band intensity of SCN⁻in the mixture of EDCA/KSCN. Where A'[CN] refers to the CN band intensity of a certain polymer in a mixture of polymer/KSCN, A'[CN_{SCN-}] refers to the CN band intensity of SCN⁻in a mixture of polymer/KSCN.

^bwhere residual C=O was calculated in a similar way with those of CN conversion

^cwhere residual CH₂, CH3wascalculated in a similar way with those of CN conversion

 d where the content of -COOH was calculated assuming no other decomposition of -COOCH₂CH₃during the post-modification process.

^ewhere the content of -CONHNH₂ was calculated assuming no other decomposition of - $COOCH_2CH_3during$ the post-modification process.

5. Raman scattering.

Fig.S7 Raman scattering of CTF-CSUs

6. XPS analysis

Fig.S8 XPS spectrum of CTF-CSU20 (Calculated integrated area of C-O:C=O = 2:1)

7. Elemental analysis

Sample	Found (%)				Calculated (%)			
	С	Н	0	Ν	С	Н	0	Ν
CTF-CSU20	66.28	4.22	21.04	8.06	71.28	4.29	10.56	13.86
CTF-CSU36@post	60.76	3.37	17.71	18.01	69.82	3.27	11.63	15.27
CTF-CSU37@post	60.73	3.09	15.41	19.52	66.43	3.81	5.53	24.22
CTF-CSU36@pre	67.63	3.60	13.85	14.39	69.82	3.27	11.63	15.27
CTF-CSU37@pre	70.00	3.46	14.47	11.87	66.43	3.81	5.53	24.22

Tab. S3 Elemental analysis date of the polymers

8. ¹H NMR of monomers

Fig.S9 ¹H NMR spectrum of Ethyl-2-(3,6-dibromo-9H-carbazol-9-yl)acetate

Fig.S10 ¹H NMR spectrum of Ethyl-2-(3,6-dicyano-9H-carbazol-9-yl)acetate

Fig.S11 ¹H NMR spectrum of 2-(3,6-dicyano-9H-carbazol-9-yl)acetic acid

Fig.S12 ¹H NMR spectrum of 2-(3,6-dicyano-9H-carbazol-9-yl)acetohydrazide

9. ¹³C NMR of monomers

Fig.S13 ¹³C NMR spectrum of 2-(3,6-dicyano-9H-carbazol-9-yl)acetic acid

Fig.S14 ¹³C NMR spectrum of 2-(3,6-dicyano-9H-carbazol-9-yl)acetohydrazide

10.XRD analysis

Fig.S15 Stacking of the AA (top, a = b = 17.05 Å, and c = 3.5 Å, P6 2M) and AB (down, a = b = 16.98 Å, and c = 6.7 Å, P6 2C) of CTF-CSU20 framework with P-6 hexagonal unit cell.

Fig.S16 Experimental PXRD pattern and the simulated patterns for CTF-CSU20 framework in staggered packing AB (down, a = b = 16.98 Å, and c = 6.7 Å, P6 2C) of with P-6 hexagonal unit cell.

Fig.S17 PXRD patterns of CTF-CSU36@pre and CTF-CSU36@post

Fig.S18 PXRD patterns of CTF-CSU37@pre and CTF-CSU37@post

11.Thermo-gravimetric analysis

Fig. S19 Thermo-gravimetric traces (TGA) for CTF-CSUs

12. Morphology analysis by SEM and TEM

Fig.S20 Scanning electron micrographs (SEM) for (a) CTF-CSU20; (b) CTF-CSU37@post; (c) CTF-CSU36@post;(d) CTF-CSU36@pre; (e) CTF-CSU37@pre

Fig.S21 Transmission electronmicrographs (TEM) for (a) CTF-CSU20; (b) CTF-CSU37@post; (c) CTF-CSU36@post; (d) CTF-CSU36@pre; (e) CTF-CSU37@pre

13.Gas CO_2 sorption isotherms of CTF-CSUs at 273K and 298K

Fig.S22 CO₂ adsorption isotherms of CTF-CSUs at 298K

Fig.S23 CO_2 and N2 uptake of CTF-CSUs at 273 K

Fig.S24 Comparison of isosteric heat of adsorption and IAST selectivities.
blue: Plots of Q_{st} for CO₂ versus CO₂ uptake; red: IAST selectivities of CO₂ over N₂ for binary gas mixtures of 15/85 molar composition at 273 K.

14.Gas adsorption selectivity study

Adsorption selectivity of CO_2 over N_2 for CTF-CSUs at 273 K imitated by ideal adsorbed solution theory (IAST) model.

Fig.S25 CO₂ isotherm of CTF-CSU20 fitted by single-site Langmuir equation

Fig.S26 N_2 isotherm of CTF-CSU20 fitted by single-site Langmuir equation

Fig.S27 CO₂ isotherm of CTF-CSU36@pre fitted by single-site Langmuir equation

Fig.S28 N₂ isotherm of CTF-CSU36@pre fitted by single-site Langmuir equation

Fig.S29 CO₂ isotherm of CTF-CSU36@post fitted by single-site Langmuir equation

Fig.S30 N₂ isotherm of CTF-CSU36@post fitted by single-site Langmuir equation

Fig.S31 CO₂ isotherm of CTF-CSU37@pre fitted by single-site Langmuir equation

Fig.S32 N2 isotherm of CTF-CSU37@pre fitted by single-site Langmuir equation

Fig.S33 CO₂ isotherm of CTF-CSU37@post fitted by single-site Langmuir equation

Fig.S34 N₂ isotherm of CTF-CSU37@post fitted by single-site Langmuir equation

Fig.S35 IAST selectivities of CO_2 over N_2 for binary gas mixtures of 15/85 molar composition in CTF-CSUs at 273 K.

15.References

[1] W. Lu, D. Yuan, J. Sculley, D. Zhao, R. Krishna and H. C. Zhou, J. Am. Chem. Soc., 2011, 133, 18126-18129.

[2] Y. Liu, S. Wu, G. Wang, G. Yu, J. Guan, C. Pan and Z. Wang, *J. Mater. Chem. A*, 2014, **2**, 7795-7801.

[3] S. Gu, J. He, Y. Zhu, Z. Wang, D. Chen, G. Yu, C. Pan, J. Guan and K. Tao, *ACS Appl. Mater. Interfaces*, 2016, **8**, 18383-18392.

[4] P. Katekomol, J. Roeser, M. Bojdys, J. Weber and A. Thomas, *Chem Mater*, 2013, **25**, 1542-1548.