Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Information

One-pot synthesis of O-doped BN nanosheets as capacitive deionization electrode for efficient removal of heavy metal ions from water

Ming Ming Chen, ^{a,b} Da Wei, ^{a,b} Wei Chu, ^c Tao Wang ^{a,b} and Dong Ge Tong ^{a,b*}

^a State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China. E-mail: tongdongge@163.com; Fax: +86 28 8407 3193

^b Collaborative Innovation Center of Panxi Strategic Mineral Resources Multi-purpose Utilization, College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.

^c School of Chemical Engineering & Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu 610065, China. E-mail: chuwei1965@foxmail.com; Fax: +86 28 8540 3397

Summary: 41 Pages; 10 Tables; 32 Figures

Table S1	3
Table S2	4
Table S3	4
Table S4	5
Table S5	5
Table S6	6
Table S7	6
Table S8	7
Table S9	8
Table S10	9
Fig.S1	10
Fig.S2	12
Fig.S3	13
Fig.S4	14
Fig.S5	15
Fig.S6	15
Fig.S7	16
Fig.S8	16
Fig.S9	17
Fig.S10	18
Fig.S11	19
Fig.S12	20
Fig.S13	21
Fig.S14	22
Fig.S15	23
Fig.S16	24
Fig.S17	25
Fig.S18	26
Fig.S19	27
Fig.S20	28
Fig.S21	29
Fig.S22	30
Fig.S23	31
Fig.S24	32
Fig.S25	33
Fig.S26	34
Fig.S27	35
Fig.S28	36
Fig.S29	37
Fig.S30	38
Fig.S31	40
Fig.S32	41

Table of Contents

ionic liq	luid kinds on the yi	elds, averag	e thickness, and c	themical compositi	on of BNO	nanoshee	ts				
Sample	Reaction	Reaction	NOCI/CuB ₂₃	Ionics liquid	Ionics li	quid Yi	elds	Nanosheets	Average	Chemical	1
	temperature/ °C	time	nanosheets	volume/ml	kinds	%(yields	thickness	composition	
		/min						0/0/	/nm		ļ
1	25	30	25:1	50	[BMIM]CI	10	0.0	100.0	1.033	BNO	
7	35	24	25:1	50	[BMIM]CI	10	0.0	100.0	1.033	BNO	
ŝ	45	19	25:1	50	[BMIM]CI	10	0.0	100.0	1.033	BNO	
4	55	14	25:1	50	[BMIM]CI	10	0.0	100.0	1.033	BNO	
5	65	10	25:1	50	[BMIM]CI	10	0.0	100.0	1.033	BNO	
9	25	30	25:1	50	[BMIM]CI	10	0.0	100.0	1.033	BNO	
7	25	09	25:1	50	[BMIM]CI	10	0.0	100.0	1.033	BNO	
8	25	20	25:1	50	[BMIM]CI	70	0.	100.0	1.033	BNO	
6	25	10	25:1	50	[BMIM]CI	55	0.	100.0	1.033	BNO	
10	25	5	25:1	50	[BMIM]CI	38	0.	100.0	1.033	BNO	
11	25	7	25:1	50	[BMIM]CI	23	0.	100.0	1.033	BNO	
12	25	1	25:1	50	[BMIM]CI	12	0.	100.0	1.033	BNO	
13	25	0.5	25:1	50	[BMIM]CI	5.(C	100.0	1.033	BNO	
14	25	30	24:1	50	[BMIM]CI	79	0.	100.0	1.033	BNO	
15	25	30	23:1	50	[BMIM]CI	90	0.	100.0	1.033	BNO	
16	25	30	25:1	50	[BMIM][B	[F ₄] 10	0.0	100.0	1.033	BNO	
17	25	30	25:1	50	[BMIM][P	F_{6}] 10	0.0	100.0	1.033	BNO	
18	25	30	25:1	70	[BMIM]CI	10	0.0	100.0	1.033	BNO	
19	25	30	25:1	30	[BMIM]CI	90	0.	100.0	1.033	BNO	

Table S1 The effect of reaction parameters, including reaction temperature, reaction time, NOCI/CuB₂₃ nanosheets, ionic liquid volume and

m

Table S2 Evaluated model parameters of the adsorption isotherms of BNOnanosheets over Cd^{2+} at 298 K

Langmuir model	Freundlich model
$q_m = 2281 \text{ mgg}^{-1}$	1/n = 0.5101
$K_L = 0.003581 (Lmg^{-1})$	$K_F = 58.3115 \ (mgg^{-1})(Lmg^{-1})^{1/n}$
$R^2 = 0.9990$	$R^2 = 0.9643$

Table S3 Cd^{2+} electrosorption dimensionless quantity (R_L) over BNO nanosheets at

Initial concentrations / mgL ⁻¹	R _L
100	0.74
200	0.58
300	0.48
400	0.41
600	0.32
800	0.26
1000	0.22
1200	0.19

different initial concentrations

Table S4 Parameters of pseudo-first-order and pseudo-second-order models for theelectro-adsorption of Cd^{2+} onto BNO nanosheets at 298 K under 1.2V

Pseudo-first-order model	Pseudo-second-order model
$C_0 = 600 \text{ mgL}^{-1}$	$C_0 = 600 \text{ mgL}^{-1}$
$q_{e, exp} = 1395 \text{ mgg}^{-1}$	$q_{e, exp} = 1395 \text{ mgg}^{-1}$
$q_{e,cal} = 18 \text{ mgg}^{-1}$	$q_{e,cal} = 1395 \text{ mgg}^{-1}$
$K_1 = 0.1494$	$K_2 = 8.06 \times 10^{-4}$
$R^2 = 0.9253$	$R^2 = 1$

Table S5 Parameters of pseudo-first-order and pseudo-second-order kinetics in termsof different voltages for the electrosorption of Cd^{2+} onto BNO nanosheets at 298 K

Bias potential	Pseudo-first-	order		Pseudo-secon	d-order	
/ V	$q_{e,cal}/mgg^{-1}$	K_1/\min^{-1}	R^2	$q_{e,cal}/mgg^{-1}$	$K_2/\text{ gmg}^{-1}$	R^2
					min ⁻¹	
0	8.55	0.0758	0.9388	243	2.47×10 ⁻³	0.9999
0.4	13.31	0.1035	0.8663	625	1.35×10 ⁻³	0.9999
0.8	15.92	0.1200	0.9249	1000	1.00×10 ⁻³	0.9999

Temperature / K	ΔG/(kJ mol ⁻¹)	ΔH/(kJ mol ⁻¹)	$\Delta S/(J \text{ mol}^{-1})$
298 K	-2.746		
308 K	-2.222	-12.782	-33.9
318 K	-1.959		
328 K	-1.702		

 Table S6 Thermodynamic parameters for the electrosorption of Cd²⁺ onto BNO

 nanosheets at 298 K

 Table S7 Evaluated model parameters of the electrosorption isotherms of BNO

Cations	Langmui	r model		Freundl	ich model	
	q_m / mgg^{-1}	K_L/Lg^{-1}	R ²	1/n	$K_F/(mgg^{-1})(Lmg^{-1})^{1/n}$	R ²
Pb^{2+}	735	0.00238	1	0.6399	6.85	0.9286
Cu ²⁺	858	0.00244	0.9996	0.6363	8.29	0.9274
Ni ²⁺	976	0.00250	0.9995	0.6331	9.62	0.9263
Co ²⁺	865	0.00251	0.9995	0.6328	9.77	0.9262
Zn^{2+}	3211	0.00515	0.9976	0.5331	81.22	0.8875
Mg^{2+}	829	0.00245	0.9996	0.6361	8.38	0.9273
Ca ²⁺	963	0.00243	0.9996	0.6372	7.95	0.9277
Fe ²⁺	971	0.00251	0.9995	0.6329	9.71	0.9262
Fe ³⁺	1200	0.00287	0.9998	0.5923	13.21	0.9154
Na ⁺	578	0.00203	1	0.6405	5.56	0.9213

nanosheets over various cations at 298 K

Cations	C_0/mgL^{-1}	q _{e,exp}	Pseudo	-first-ord	er	Pseudo-	-second-ord	er
		/mgg ⁻¹	model			model		
			q _{e,cal} /mgg ⁻¹	k_1/min^{-1}	R ²	q _{e,cal} /mgg ⁻¹	k_2/gmg^{-1} min ⁻¹	R²
Pb ²⁺	600	220	10.9	0.0750	0.9325	426	0.00148	1
Cu ²⁺	600	488	11.3	0.0878	0.9521	514	0.00140	1
Ni ²⁺	600	559	12.3	0.0976	0.9307	580	0.00135	1
Co ²⁺	600	410	12.3	0.109	0.9558	588	0.00152	1
Zn^{2+}	600	2080	21.9	0.225	0.9179	2192	0.000693	1
Mg^{2+}	600	245	11.7	0.107	0.9299	518	0.00169	1
Ca ²⁺	600	552	11.2	0.0805	0.9600	496	0.00135	1
Fe ²⁺	600	555	12.3	0.102	0.9303	585	0.00139	1
Fe ³⁺	600	682	13.6	0.115	0.9305	680	0.001125	1
Na^+	600	380	10.0	0.0698	0.9211	380	0.00155	1

Table S8 Parameters of pseudo-first-order and pseudo-second-order models for theelectrosorption over various cations at 298 K

Ions	Charge size	Hydrated radius (Å)	Ionic radius (Å)	electronegativity	Atomic weight
Zn ²⁺	2	4.19	0.72	1.9	63.55
Cd^{2^+}	2	4.26	0.97	1.69	112.4
Pb^{2+}	2	4.01	1.32	2.33	207.2
Ni ²⁺	2	4.04	0.70	1.91	58.69
Co ²⁺	2	4.23	0.72	1.88	58.93
Cu^{2^+}	2	4.30	0.74	1.65	65.39
Mg^{2+}	2	4.28	0.65	1.31	24.31
Ca ²⁺	2	4.12	0.99	1.00	40.08
Fe ²⁺	2	4.28	0.75	1.83	55.85
Fe ³⁺	3	4.57	0.60	1.83	55.85
Na^+	1	3.58	0.98	0.90	22.99

 Table S9
 Comparison of the parameters of metal ions

Solutions	R_s / Ω	R_{ct} / Ω	Warburg coefficient of metal ions / s ^{1/2} cm ⁻¹
ZnCl ₂	1.4	0.8	4.08×10^{7}
CdCl ₂	2.1	1.1	4.52×10^{7}
FeCl ₃	0.9	2.2	8.88×10^{7}
NiCl ₂	1.4	2.6	9.80×10^{7}
FeCl ₂	1.0	2.7	1.31×10^{8}
CaCl ₂	1.3	2.8	1.92×10^{8}
CuCl ₂	1.1	3.1	2.69×10^{8}
CoCl ₂	1.0	3.7	3.96×10^{8}
NaCl	1.2	4.0	5.02×10^{8}
MgCl ₂	1.2	6.2	6.77×10^{8}
PbCl ₂	1.5	6.9	7.61×10^{8}

Table S10 Fitted EIS parameters of the as-prepared BNO nanosheets in different ion solutions at room temperature.

 R_{s} represents for the electrolyte resistance and R_{ct} for the charge transfer resistance.

Fig.S1 Schematic diagram for the CDI cell set-up in our work.

(Continued)

Fig.S2 The relationship between solution concentration and conductivity of various metal chloride solution.

Fig.S3 (a) Low magnification and (b) enlarged STEM images of the graphene-like CuB_{23} nanosheets.

Fig.S4 SAED pattern, B, N and O elemental maps for the as-prepared BNO nanosheets of the as-prepared BNO nanosheets.

Fig.S5 (a) AFM image and (b) the cross section analysis for the as-prepared BNO nanosheets.

Fig.S6 XPS survey spectrum, B 1s spectra, N 1s spectra and O 1s spectra of the as-prepared BNO nanosheets.

Fig.S7 ¹¹B, ¹⁵N 1s and ¹⁷O MAS NMR spectra of the as-prepared BNO nanosheets.

Fig.S8 (a) N_2 adsorption-desorption plots and (b) pore size distribution of the as-prepared BNO nanosheets.

Fig.S9 (a) XRD patterns and (b) ToF-SIMS spectra of the products during the fabrication.

Fig.S10 STEM images of the products during the fabrication: (a) 0.5 min; (b) 1 min; (c) 2 min;(d) 5 min;(e)10 min;(f) 30 min

Fig.S11 (a) CV curves with different concentrations at 5 mVs⁻¹; (b) Charge/discharge curves in 600mgL⁻¹ CdCl₂ aqueous solution at 0.2mAcm⁻²; (c) Specific capacity at various diffident current density; (d) Nyquist plots and equivalent circuit (inset) in 600mgL⁻¹ CdCl₂ aqueous solution of the as-prepared BNO nanosheets.

Fig.S12 (a) CV curves at 5 mVs⁻¹ in 600mgL⁻¹ CdCl₂ aqueous solution; (b) Charge-discharge profiles at 0.2 mAcm⁻² in 600mgL⁻¹ CdCl₂ aqueous solution; (c) Specific capacity at 0.2 mAcm⁻² in 600mgL⁻¹ CdCl₂ aqueous solution for amorphous BNO prepared in this work, commercial amorphous BN and BN.

Fig.S13 (a) Solution concentration changes; (b) solution conductivity changes and (c) current signal changes for the as-prepared BNO nanosheets over $600 \text{mgL}^{-1} \text{ CdCl}_2$ solution with a flowing rate of 50 mgL⁻¹ at various voltages during electrosorption.

Fig.S14 (a) 15 Nand (b) 17 O MAS NMR of the charged BNO nanosheets at various voltage in CdCl₂ solution.

Fig.S15 (a) Cd $3d_{5/2}$ (b) N1s and (c) O1s XPS spectra of the charged BNO nanosheets

at various applied voltage.

Fig.S16 Cd $3d_{5/2}$, N1s and O1s XPS spectra of the charged BNO nanosheets when the electrode was short-circuited.

Fig.S17 (a) 113 Cd; (b) 15 N 1s and (c) 17 O MAS NMR spectra of the charged BNO nanosheets when the electrode was short-circuited.

Fig.S18 (a) Electrosorption capacity vs. time profiles; (b) Solution conductivity vs. time profiles; (c) Charge efficiency and (d) Zeta potential vs. pH profiles of amorphous BNO nanosheets, amorphous BNO, commercial amorphous BN and BN, respectively; (e) The electrosorption capacity of our amorphous BNO nanosheets towards Cd^{2+} vs. pH profile at 1.2 V by CDI with a flowing rate of 50 mgL⁻¹.

Fig.S19 (a) Electrosorption capacity; (b) Solution conductivity and (c) I-t relationships of our amorphous BNO nanosheets towards Cd^{2+} at different flowing rates during electrosorption.

Fig.S20 (a) Electrosorption isotherm;(b) Langmuir model simulation; (c) Freundlich model simulation; (d) pseudo-first-order kinetics simulation; (e) pseudo-second-order kinetics simulation for the as-prepared BNO nanosheets over $600 \text{ mgL}^{-1} \text{ CdCl}_2$ aqueous solution at 1.2 V by CDI with a flowing rate of 50 mgL⁻¹.

Fig.S21 (a) Electrosorption isotherm;(b) Solution conductivity; (c) Freundlich model simulation; (d) pseudo-first-order kinetics simulation; (e) pseudo-second-order

kinetics simulation for the as-prepared BNO nanosheets towards $600 \text{ mgL}^{-1} \text{ CdCl}_2$ aqueous solution at different Bias potentials with a flowing rate of 50 mgL⁻¹.

Fig.S22 (a) electro-adsorption capacity at different temperatures; (b) solution conductivity changes; (c) Plots of lnKd vs T^{-1} ; (d) Plots of lnk₂ vs T^{-1} for the as-prepared BNO nanosheets towards 600 mgL⁻¹ CdCl₂ aqueous solution at different Bias potentials with a flowing rate of 50 mgL⁻¹.

Fig.S23 Effect of anions on the electrosorption capacity of BNO nanosheets $(600 \text{mgL}^{-1}\text{Cd}^{2+})$ at 1.2 V by CDI with a flowing rate of 50 mgL⁻¹.

Fig.S24 (a) Solution conductivity changes; (b) electrosorption capacity and charge efficiencies; (c) the I–t curves of adsorption (charge at 1.2 V) and desorption (discharge at 0 V) for BNO nanosheets towards $600mgL^{-1}$ CdCl₂ aqueous solution at 1.2 V by CDI with a flowing rate of 50 mgL⁻¹ over 10 cycles.

Fig.S25 (a) XRD profile; (b) Nitrogen sorption isotherm (the inset is the pore size distribution); (c) STEM image and the elemental mapping of its red frame (C and F elements originated from PTFE and carbon black) and (f) enlarged STEM image of the as-prepared BNO nanosheets after 10 cycles.

Fig.S26 CDI Removal efficiency of (a)10 mg BNO nanosheets over Cd^{2+} 50 ppb to 10 ppm; (b) BNO nanosheets with different masses over 600 mgL⁻¹ Cd²⁺ under 1.2 V at a flow rate of 50 mgL⁻¹.

Fig.27 (a) In-situ electrosorption curves; (b) solution conductivity changes; (c) Electrosorption isotherms;(d) removal efficiency for individual metal ions in aqueous solution (600mgL^{-1}) over 10 mg BNO nanosheets; (e) Removal efficiency for competitive metal ions in 100 mL aqueous solution (600mgL^{-1}) on 200 mg BNO nanosheets at 1.2 V by CDI with a flowing rate of 50 mgL⁻¹.

Fig.28 (a) Binding energy shifts of N, O and M^{2+} and (b) ¹⁵N, ¹⁷O and M^{2+} MAS NMR shifts of our BNO nanosheets after being charged at 1.2V in various meatl ions solution (600mgL⁻¹) at a flow rate of 50 mgL⁻¹. All the chemical shifts was detemined from the shifts of core peaks in the NMR spectra. The chemical shifts of Fe²⁺ and Ni²⁺ was detemined from their static NMR spectra.

Fig.29 (a) In-situ electrosorption curves; (b) solution conductivity changes; (c) Electrosorption capacity in individual and competitive adsorption; (d) removal efficiency for individual metal ions in aqueous solution (600mgL⁻¹) over 10 mg BNO nanosheets; (e) Removal efficiency for competitive metal ions in 100 mL aqueous solution (600mgL⁻¹) on 200 mg BNO nanosheets at 1.2 V by CDI with a flowing rate of 50 mgL⁻¹.

Fig.30 (a) Binding energy shifts of N, O and M^{n+} and (b) ¹⁵N, ¹⁷O and M^{n+} MAS NMR shifts of our BNO nanosheets after being charged at 1.2V in various meatl ions solution (600mgL⁻¹) at a flow rate of 50 mgL⁻¹. All the chemical shifts was detemined from the shifts of core peaks in the NMR spectra. The chemical shifts of Fe³⁺ was detemined from its static NMR spectra.

(Continuted)

Fig.S31 Nyquist plots of the as-prepared BNO nanosheets in different ion solutions (600mgL⁻¹) at room temperature.

Fig.S32 The relationships between R_{ct} and q_e of BNO nanosheets being charged at 1.2V in various meatl ions solution (600mgL⁻¹) with a flow rate of 50 mgL⁻¹.