Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information (ESI)

Asymmetric Supercapacitor with Excellent Cycling Performance Realized by

Hierarchical Porous NiGa₂O₄ Nanosheets

Shude Liu^a, Kwan San Hui^{b,*}, Kwun Nam Hui^{c,*}, Hai-Feng Li^c, Kar Wei Ng^c, Jincheng

Xu^c, Zikang Tang^c, and Seong Chan Jun^{a,*}

^aNano-Electro Mechanical Device Laboratory, School of Mechanical Engineering,

Yonsei University, Seoul 120-749, South Korea

^bSchool of Mathematics, University of East Anglia, Norwich, NR4 7TJ, United

Kingdom

^cInstitute of Applied Physics and Materials Engineering, University of Macau, Avenida

da Universidade, Macau, China.

*E-mail: bizhui@umac.mo (Kwun Nam Hui)

*E-mail: k.hui@uea.ac.uk (Kwan San Hui)

*E-mail: scj@yonsei.ac.kr (Seong Chan Jun)

1

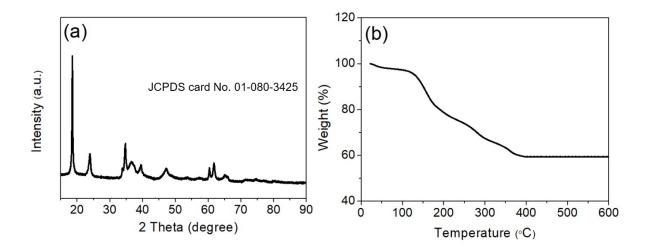


Figure S1. (a) XRD pattern and (b) TGA curve of the as-prepared NiGa-precursor.

Figure S2. Typical XRD patterns of the (a) NiO and (b) NiGa₂O₄ samples.

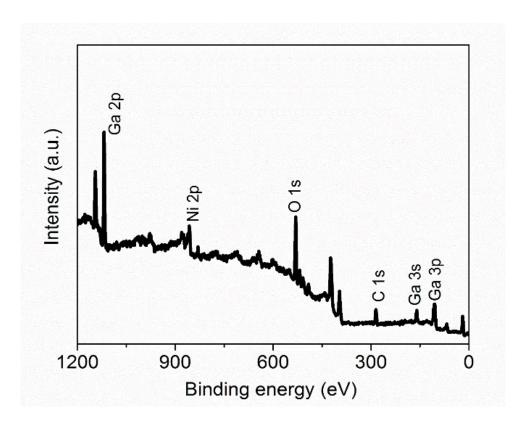
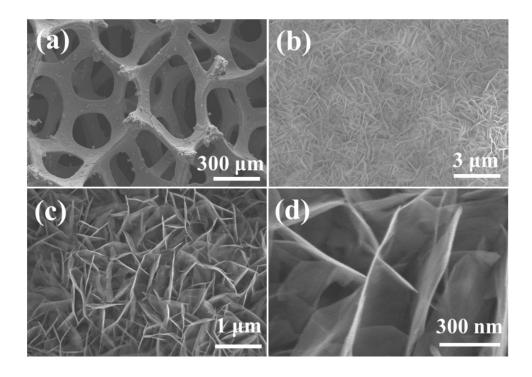
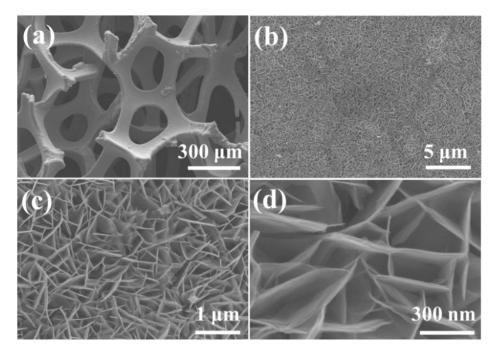
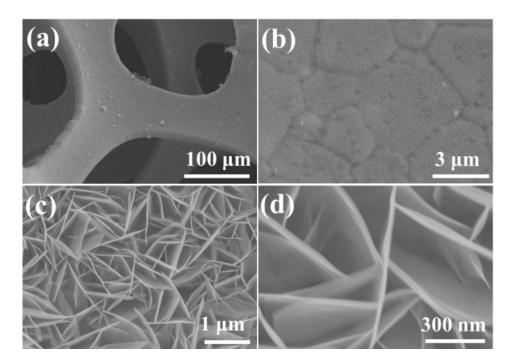
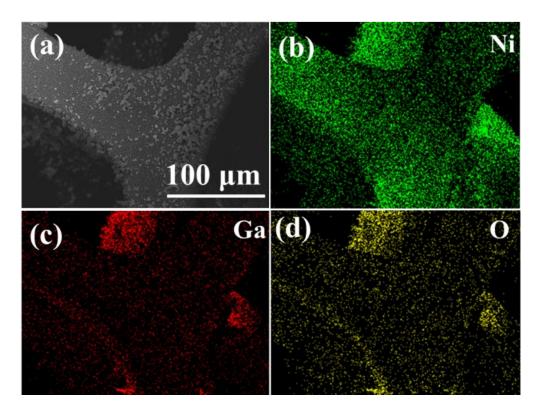
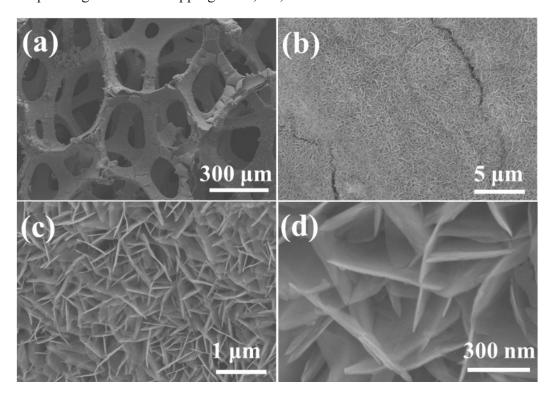
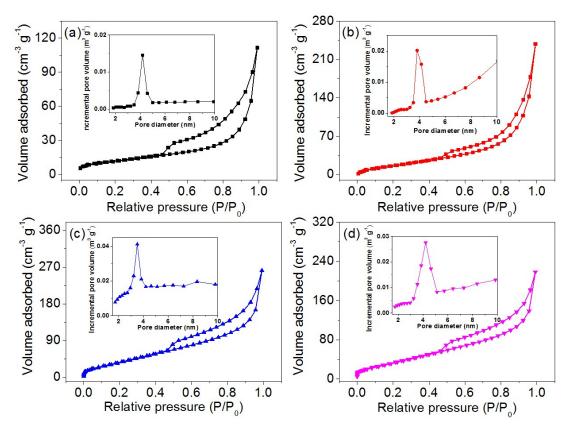


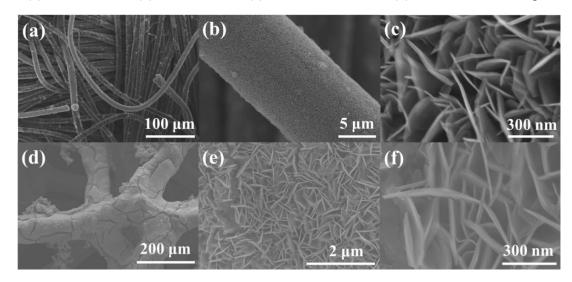
Figure S3. XPS general spectra of the NiGa₂O₄ nanosheets.

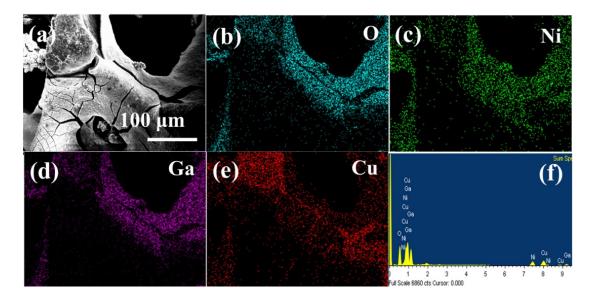




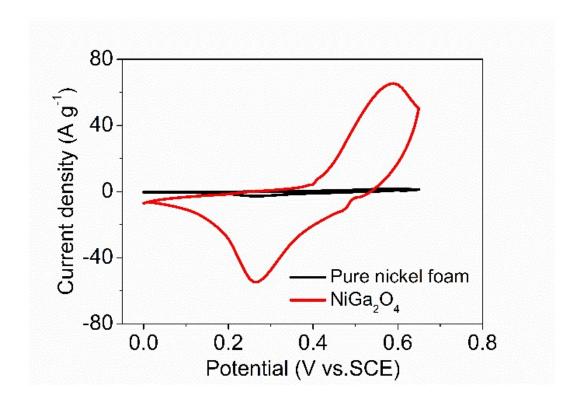

Figure S4. SEM images at high and low magnification of the $NiGa_2O_4$ -4 h nanosheets.

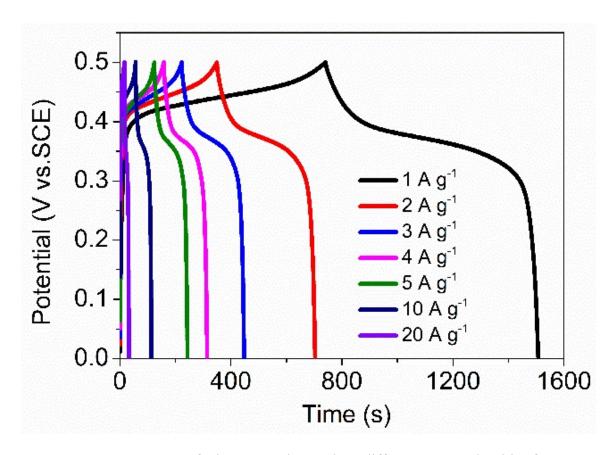

Figure S5. SEM images at high and low magnification of the $NiGa_2O_4$ -8 h nanosheets.

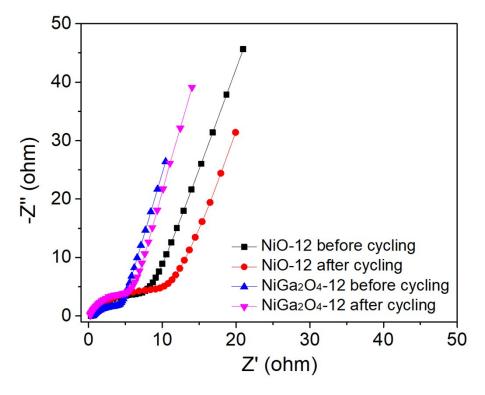

Figure S6. SEM images at high and low magnification of the NiGa₂O₄-12 h nanosheets.

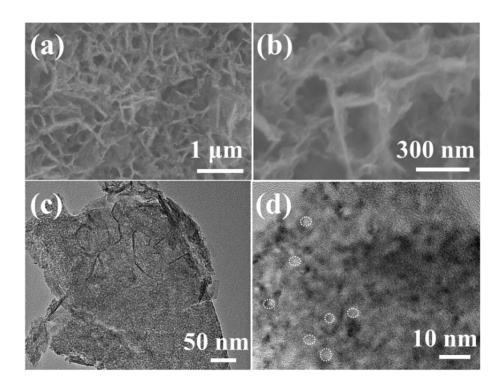

Figure S7. (a) SEM image of the NiGa₂O₄-12 h nanosheets on Ni foam and (b–d) the corresponding elemental mapping of Ni, Ga, and O.

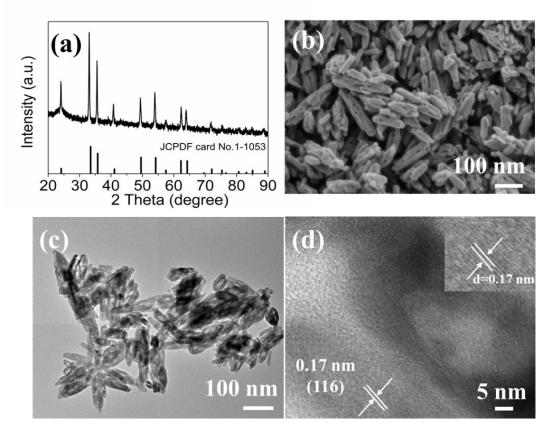

Figure S8. SEM images at high and low magnification of the NiGa₂O₄-16 h nanosheets.

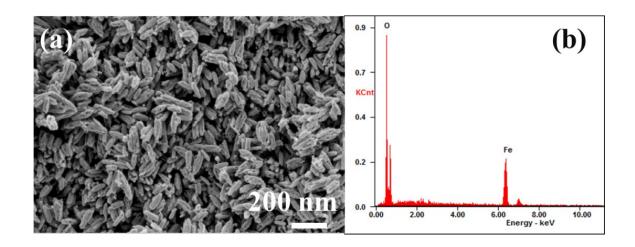

Figure S9. Nitrogen adsorption—desorption isotherms and pore size distribution curves of (a) NiGa₂O₄-4 h, (b) NiGa₂O₄-8 h, (c) NiGa₂O₄-12 h, and (d) NiGa₂O₄-16 h samples.


Figure S10. SEM images of the NiGa₂O₄-12 h on the different substrates: (a–c) C fiber; (d–f) Cu foam.


Figure S11. (a–e) Mapping results from the NiGa₂O₄-12 h nanosheets on Cu foam and (f) the corresponding EDS spectrum.


Figure S12. CV curves of the NiGa₂O₄-12 h nanosheets and pure Ni foam electrodes obtained at a scan rate of 50 mV s⁻¹.


Figure S13. GCD curves of NiGa₂O₄-12 h sample at different current densities from 1 to 20 A g^{-1} .


Figure S14. EIS curves of the NiO-12 h and NiGa2O4-12 h electrodes before and after the cycling test.

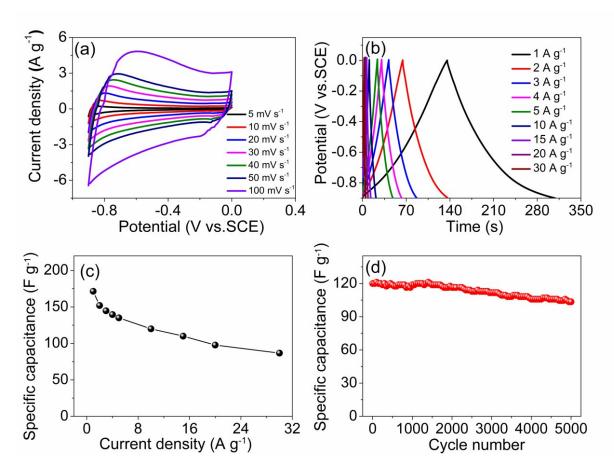

Figure S15. SEM and TEM images of NiGa₂O₄-12 h nanosheet electrode after cycle test: (a–b) SEM image; (c) low-magnification TEM image; (d) HRTEM image.

Figure S16. Structural and morphology characterization of spindle-like Fe₂O₃: (a) XRD pattern; (b) SEM image; (c–d) TEM images at different resolutions.

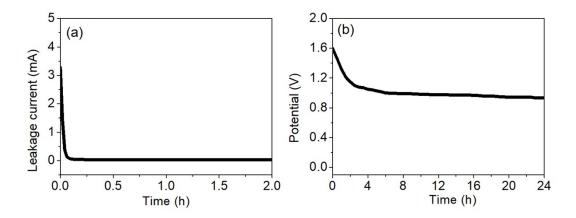


Figure S17. (a) SEM image of spindle-like Fe₂O₃; (b) corresponding EDX spectra.

Figure S18. Electrochemical properties of Fe_2O_3 : (a) CV curves. (b) Charge–discharge voltage profiles. (c) Specific capacitance at different current densities. (d) Cycling performance at a current density of 10 A g^{-1} .

To study the electrochemical properties of the as-prepared spindle-like Fe₂O₃, the CV GCD cycling, and EIS measurements are performed in a 6 M KOH solution. Figure S18a shows the CV curves of Fe₂O₃ electrode at various scan rates range from 5 to 100 mV S⁻¹ in the potential window of -0.9-0 V vs. SCE. The similar rectangular shape of CV curves is manifested by the Faradaic behavior of Fe₂O₃, which might arise from a reversible Fe³⁺/Fe²⁺ couple. The peak current increases with an insignificant change in the CV shape, although the scan rate increases to 100 mV s⁻¹, which reveals its good electrochemical reversibility and high rate capability. GCD measurements are conducted in a potential range of -0.9-0 V at various current densities ranging from 1 to 30 A g⁻¹, as displayed in Figure S18b. The specific capacitance corresponded to 171.5 F g⁻¹ at a current density of 1 A g⁻¹ and remains at 86.7 F g⁻¹ at a high current density of 30 A g⁻¹ (**Figure S18c**). In particular, the stable specific capacitance of 103 F g^{-1} can be retained for the spindle-like Fe₂O₃ after 5,000 cycles at 10 A g^{-1} with capacitance retention of almost 86% (Figure S18d), indicating a good electrochemical stability. The outstanding rate capability and electrochemical stability could be attributed to the one-dimensional spindle structure, which is in favor of fast ion diffusion and provides a short transport distance. In order to further confirm the excellent performance of the spindle-like Fe₂O₃ electrode.

Figure S19. (a) Leakage current and (b) self-discharge curves of the NiGa₂O₄-12 $h//Fe_2O_3$ ASC device.

Table S1. Comparison of cyclic performances between the NiGa₂O₄ and previous reports on Ni-based oxides/hydroxides/sulfides.

Material	The correspondin g current density	Capacitance retention (cycles)	Ref
Ni(OH) ₂ nanosheets	5 A g^{-1}	75% (3,000)	S1
Ni(OH) ₂ /RGO/Ni(OH) ₂ films	20 mA cm ⁻²	95.3% (3,000)	S2
CNT@Ni(OH) ₂ nanosheets	8 A g^{-1}	92% (1,000)	S3
MnCo-LDH@Ni(OH) ₂ core–shell heterostructures	20 A g^{-1}	90.9% (5,000)	S4
NiO nanotubes	2 A g^{-1}	93.2% (10,000)	S5
α-Fe ₂ O ₃ nanorod/NiO nanosheet	1 mA cm ⁻²	96.2% (3,000)	S 6
NiCo ₂ O ₄ nanowire@CoMoO ₄ nanoplate	10 mA cm ⁻²	77.7% (1,000)	S7
$ZnCo_2O_4@Ni_xCo_{2x}(OH)_{6x}$ core/shell nanowires	20 mA cm ⁻²	85.6% (2,000)	S 8
Ni-Co-S nanoparticles/graphene	$6~\mathrm{A~g^{-1}}$	90% (8,000)	S9
NiCo ₂ O ₄ nanowire@Ni ₃ S ₂ nanosheet	$2~\mathrm{A~g^{-1}}$	93.3% (10,000)	S10
NiGa ₂ O ₄ nanosheets	20 A g^{-1}	102.4% (10,000)	Present work

Table S2. Refined room-temperature structural parameters of NiO and NiGa₂O₄ compounds as well as the calculated shortest bond lengths (Å) and the goodness of fit.

			group <i>Fm-3r</i>		
a = b	$= c (\mathring{A})$		4.1921(15)	4.1921(15)	4.1921(10)
α, β, γ	′(°)		90	90	90
Atom	Site	Χ	У	Z	$B(\mathring{A}^2)$
Ni	4a	0.00	0.00	0.00	2.03(4)
0	4 <i>b</i>	0.50	0.50	0.50	1.98(9)

Shortest Ni-Ni: 2.9643(1) Å Shortest Ni-O: 2.0997(1) Å

 $R_{\rm B} = 2.34$, $R_{\rm F} = 1.20$, and $\chi^2 = 1.80$

NiG	ia₂O₄ (cı	ubic, spac	e group <i>Fd-</i>	<i>3m</i> (NO.22)	(7), Z = 8)	
a = b = c (Å)			8.2977(81)	8.2977(81)	8.2977(81)	
α, β, γ	/(°)		90	90	90	
Atom Ni	Site 16 <i>c</i>	<i>x</i> 0.00	<i>y</i> 0.00	<i>z</i> 0.00	B (Å ²) 0.73(4)	
Ga1	16 <i>c</i>	0.00	0.00	0.00	1.06(5)	
Ga2	8 <i>b</i>	0.375	0.375	0.375	1.06(5)	
0	32e	0.253(1)	0.253(1)	0.253(1)	0.50(1)	

Shortest Ni(Ga1)-Ni(Ga1): 2.9338(1) Å

Shortest Ni(Ga1)-O: 2.0961(1) Å

Shortest Ga2-Ga2: 3.5931(1) Å

Shortest Ga2-O: 1.7535(1) Å

 $R_{\rm B}$ = 13.57, $R_{\rm F}$ = 9.04, and χ^2 = 1.21

Table S3. Comparison of cyclic performances between the NiGa₂O₄//Fe₂O₃ ASC device and the previous reports

Device	Correspondin g current density/scan rate	Capacitance retention (cycles)	Ref
MnCo ₂ O ₄ @Ni(OH) ₂ //AC	$6~\mathrm{A~g^{-1}}$	90% (2,500)	S11
N-doped cellulose @NiCo-LDH//N-doped cellulose	$10~{\rm A~g^{-1}}$	74.4% (5,000)	S12
(Ni, Co) _{0.85} Se//graphene	20 mA cm ⁻²	85% (10,000)	S13
Cu ₂ O/CuMoO ₄ //AC	5 A g^{-1}	86.6% (3,000)	S14
CoNi-LDH//FeOOH	$100 \; \rm mV \; s^{-1}$	92.3% (3,000)	S15
$NiGa_2O_4//Fe_2O_3$	$10~{\rm A}~{\rm g}^{-1}$	94.3% (10,000)	Present work

References

- 1. X. Xiong, D. Ding, D. Chen, G. Waller, Y. Bu, Z. Wang and M. Liu, Nano Energy, 2015, 11, 154-161.
- 2. S. Min, C. Zhao, Z. Zhang, G. Chen, X. Qian and Z. Guo, J. Mater. Chem. A, 2015, 3, 3641-3650.
- 3. H. Yi, H. Wang, Y. Jing, T. Peng, Y. Wang, J. Guo, Q. He, Z. Guo and X. Wang, J. Mater. Chem. A, 2015, 3, 19545-19555.
- 4. S. Liu, S. C. Lee, U. Patil, I. Shackery, S. Kang, K. Zhang, J. H. Park, K. Y. Chung and S. C. Jun, J. Mater. Chem. A, 2017, 5, 1043-1049.
- 5. F. Cao, G. Pan, X. Xia, P. Tang and H. Chen, J. Power Sources, 2014, 264, 161-167.
- 6. Y. Jiao, Y. Liu, B. Yin, S. Zhang, F. Qu and X. Wu, Nano Energy, 2014, 10, 90-98.
- 7. D. Cai, B. Liu, D. Wang, L. Wang, Y. Liu, H. Li, Y. Wang, Q. Li and T. Wang, J. Mater. Chem. A, 2014, 2, 4954-4960.
- 8. W. Fu, Y. Wang, W. Han, Z. Zhang, H. Zha and E. Xie, J. Mater. Chem. A, 2016, 4, 173-182.
- 9. J. Yang, C. Yu, X. Fan, S. Liang, S. Li, H. Huang, Z. Ling, C. Hao and J. Qiu, Energy Environ. Sci., 2016, 9, 1299-1307.
- 10. B. Liu, D. Kong, Z. X. Huang, R. Mo, Y. Wang, Z. Han, C. Cheng and H. Y. Yang, Nanoscale, 2016, 8, 10686-10694.
- 11. Y. Zhao, L. Hu, S. Zhao and L. Wu, Adv. Funct. Mater., 2016, 26, 4085-4093
- 12. F. Lai, Y. E. Miao, L. Zuo, H. Lu, Y. Huang and T. Liu, Small, 2016, 12, 3235–3244.
- 13. C. Xia, Q. Jiang, C. Zhao, P. M. Beaujuge and H. N. Alshareef, Nano Energy, 2016, 24, 78-86.
- 14. D. Du, R. Lan, W. Xu, R. Beanland, H. Wang and S. Tao, J. Mater. Chem. A, 2016, 4, 17749-17756.
- 15. J. Chen, J. Xu, S. Zhou, N. Zhao and C.-P. Wong, Nano Energy, 2016, 21, 145-153.