Supporting Information

Metal-organic framework-derived CoSe₂/(NiCo)Se₂ box-in-box hollow nanocubes with enhanced electrochemical properties for sodium-ion storage and hydrogen evolution

Seung-Keun Park,^a Jin Koo Kim,^a and Yun Chan Kang*a

^aDepartment of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea.

E-mail: yckang@korea.ac.kr (Yun Chan Kang, Fax: (+82) 2-928-3584)

Fig. S1 Morphologies of the bare ZIF-67 nanocubes: (a) and (b) SEM and (c) and (d) TEM images.

Fig. S2 XRD patterns of the ZIF-67 and ZIF-67/Ni-Co LDH nanocubes.

Fig. S3 XPS spectra of the ZIF-67/Ni-Co LDH yolk-shell nanocubes: (a) survey scan, (b) C 1s, (c) Ni 2p, and (d) Co 2p.

Fig. S4 XRD patterns of the Co/(NiCo)Se₂ and CoSe₂ nanocubes.

Fig. S5 (a) Low resolution, (b) high resolution TEM images and (c) XRD pattern of fully hollowed Ni-Co LDH nanocubes.

Fig. S6 (a) XPS survey scan of $Co/(NiCo)Se_2$ nanocubes and (b) TGA curves of the $Co/(NiCo)Se_2$ and $CoSe_2$ nanocubes.

Fig. S7 (a) N₂ adsorption and desorption isotherms and (b) BJH pore size distributions of the nanocubes.

Fig. S8 Cycling performances of the Co/(NiCo)Se₂ and CoSe₂ nanocubes at a current density of 1 A g⁻¹.

 R_e : the electrolyte resistance, corresponding to the intercept of high frequency semicircle at Z_{re} axis

Rf: the SEI layer resistance corresponding to the high-frequency semicircle

Q1: the dielectric relaxation capacitance corresponding to the high-frequency semicircle

R_{ct}: the denote the charger transfer resistance related to the middle-frequency semicircle

Q2: the associated double-layer capacitance related to the middle-frequency semicircle

Z_w: the Na-ion diffusion resistance

Fig. S9 Randle-type equivalent circuit model used for AC impedance fitting.

Fig. S10 (a, b) SEM and (c, d) TEM images of the Co/(NiCo)Se₂ nanocubes obtained after 80 cycles.

Fig. S11 Electrochemical properties of a Na-ion full cell of anode $(Co(NiCo)Se_2)/cathode (Na_3V_2(PO_4)_3/carbon): (a) charge-discharge curves, (b) cycling performance at a current density of 0.5 A g⁻¹ based on the anode mass, and (c) digital photograph of an LED diode powered by the fabricated Na-ion full cell.$

Materials	Voltage range (V)	Current rate	Initial discharge/charge capacities [mA h g ⁻¹]	Discharge capacity [mA h g ⁻¹] and (cycle number)	Rate capacity [mA h g ⁻¹]	Ref
Co/(NiCo)Se2 nanocubes	0.001-3	200 mA g ⁻¹	661/526	497 (80)	470 (5.0 A g ⁻¹)	Our work
Hollow CoSe ₂ microspheres	0.001-3	500 mA g ⁻¹	595/498	467 (40)	446 (0.9 A g ⁻¹)	[1]
CoSe _x -rGO composites	0.001-3	300 mA g ⁻¹	656/459	420 (50)	357 (1.0 A g ⁻¹)	[2]
CoSe@porous carbon polyhedra	0.005-3	100 mA g ⁻¹	504/340.2	341 (100)	208 (4.0 A g ⁻¹)	[3]
Co ₉ Se ₈ /rGO	0.01-3	50 mA g ⁻¹	670/440	406 (100)	295 (5.0 A g ⁻¹)	[4]
N-doped yolk- shell CoSe/C	0.01-3	500 mA g ⁻¹	850/x	531.6 (50)	457 (6.4 A g ⁻¹)	[5]
NiSe ₂ -rGO-C nanofibers	0.001-3	200 mA g ⁻¹	755/575	468 (100)	243 (3.0 A g ⁻¹)	[6]
NiSe ₂ nanoplates	0.005-3	100 mA g ⁻¹	1008/517	400 (80)	249 (5.0 A g ⁻¹)	[7]
Core-shell NiSe/C	0.01-3	100 mA g ⁻¹	480/355	280 (100)	186 (0.5 A g ⁻¹)	[8]

Table S1. Electrochemical properties of various nanostructured $CoSe_x$ and $NiSe_x$ materialsapplied as sodium-ion batteries reported in the previous literatures.

Table S2. Electrocatalytic activity for HER of various nanostructured CoSe_x and NiSe_x materials.

Materials	Electrolyte	Tafel slope [mV dec ⁻¹]	Overpotential at current density = 10 mA cm ⁻² [mV]	Ref
Co/(NiCo)Se ₂ nanocubes	0.5M H2SO4	39.8	190	Our work
CoSe ₂ & NiSe ₂ nanocrystals	0.5M H ₂ SO ₄	CoSe ₂ (40) NiSe ₂ (44)	CoSe ₂ (160) NiSe ₂ (190)	[9]
CoSe ₂ thin film	0.5M H ₂ SO ₄	55	327	[10]
CoSe ₂ nanoparticles coated on carbon black	0.5M H ₂ SO ₄	42	200	[11]
CoSe ₂ @defective CNT	0.5M H ₂ SO ₄	82	132	[12]
NiCoSe ₂ nanowire on carbon cloth	0.5M H ₂ SO ₄	40.1	131	[13]
Sea urchin-like NiSe	0.5M H ₂ SO ₄	64	~280	[14]
Nanocrystalline Ni _{0.85} Se	0.5M H ₂ SO ₄	49.3	~240	[15]
CoMoS ₃ prisms	0.5M H ₂ SO ₄	56.9	~170	[16]

References

- 1. Y. N. Ko, S. H. Choi and Y. C. Kang, ACS Appl. Mater. Interfaces, 2016, 8, 6449-6456.
- 2. G. D. Park and Y. C. Kang, *Chem.-Eur. J.*, 2016, 22, 4140-4146.
- 3. J. Li, D. Yan, T. Lu, Y. Yao and L. Pan, Chem. Eng. J., 2017, 325, 14-24.
- 4. X. Wang, D. Kong, Z. X. Huang, Y. Wang and H. Y. Yang, *Small*, 2017, DOI: 10.1002/smll.201603980.
- Y. Zhang, A. Pan, L. Ding, Z. Zhou, Y. Wang, S. Niu, S. Liang and G. Cao, ACS Appl. Mater. Interfaces, 2017, 9, 3624-3633.
- 6. J. S. Cho, S. Y. Lee and Y. C. Kang, *Sci Rep*, 2016, **6**, 23338.
- H. Fan, H. Yu, X. Wu, Y. Zhang, Z. Luo, H. Wang, Y. Guo, S. Madhavi and Q. Yan, ACS Appl. Mater. Interfaces, 2016, 8, 25261-25267.
- 8. Z. Zhang, X. Shi and X. Yang, *Electrochim. Acta*, 2016, **208**, 238-243.
- I. H. Kwak, H. S. Im, D. M. Jang, Y. W. Kim, K. Park, Y. R. Lim, E. H. Cha and J. Park, ACS Appl. Mater. Interfaces, 2016, 8, 5327-5334.

- C. L. McCarthy, C. A. Downes, E. C. Schueller, K. Abuyen and R. L. Brutchey, ACS Energy Lett., 2016, 1, 607-611.
- 11. D. Kong, J. J. Cha, H. Wang, H. R. Lee and Y. Cui, *Energy Environ. Sci.*, 2013, 6, 3553.
- W. Zhou, J. Lu, K. Zhou, L. Yang, Y. Ke, Z. Tang and S. Chen, *Nano Energy*, 2016, 28, 143-150.
- Z. Zhang, Y. Liu, L. Ren, H. Zhang, Z. Huang, X. Qi, X. Wei and J. Zhong, *Electrochim. Acta*, 2016, **200**, 142-151.
- 14. M.-R. Gao, Z.-Y. Lin, T.-T. Zhuang, J. Jiang, Y.-F. Xu, Y.-R. Zheng and S.-H. Yu, J. *Mater. Chem.*, 2012, **22**, 13662.
- 15. B. Yu, Y. Hu, F. Qi, X. Wang, B. Zheng, K. Liu, W. Zhang, Y. Li and Y. Chen, *Electrochim. Acta*, 2017, **242**, 25-30.
- 16. L. Yu, B. Y. Xia, X. Wang and X. W. Lou, Adv. Mater., 2016, 28, 92-97.