Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Conductive thin-layer on as-prepared positive electrode by vapour reaction printing for high-performance lithium-ion batteries

Jinhyeok Ahn,^a Sukeun Yoon^b, Seul Gi Jung^b, Jin-Heong Yim^{b*}, and Kuk Young Cho^{a,c*}

^aDepartment of Fusion Chemical Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi, 15588, Korea.

^b Division of Advanced Materials Engineering, Kongju National University, 1223-24, Cheonandaero, Seobuk-gu, Cheonan, Chungnam 31080, Korea.

^c Department of Materials Science and Chemical Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi, 15588, Korea.

Figure S1. Image of VRP chamber. VRP chamber is consisted of heater, plate for EDOT monomer, thermometer, and N2 gas inlet and outlet. EDOT monomer is evaporated when heated at 80°C. The EDOT vapour is polymerised on the surface of as-prepared electrode.

Figure S2. Fourier-transform infrared spectroscopy (FT-IR) of thin PEDOT layer coated on glass substrates with different oxidant ratio.

Figure S3. The thickness and surface resistance of thin PEDOT layer coated on glass substrates with different oxidant ratio.

Figure S4. (a) Scanning transmission electron microscopy (STEM) image of the surface of PEDOT coated LFP electrode and (b) elemental mapping images of (a)

Figure S5. Coulombic efficiency of bare LFP and PEDOT coated LFP with different oxidant/graphite full-cell in the voltage range of 2.0-4.2V. vs Li/Li⁺.