Supporting Information

Synthesis of "graphene-like" mesoporous carbons for shape stabilized phase change material with high loading capacity and improved latent heat

Jiawei Wang, ^a Xilai Jia, ^{*a} Dimberu G. Atinafu, ^a Mingshuo Wang, ^a Ge Wang^{*a} and Yunfeng Lu^b

^a Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China. E-mail: jiaxl@ustb.edu.cn; gewang@mater.ustb.edu.cn

^b Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, USA.

Fig. S1 FTIR spectra of as-prepared porous carbons.

Fig. S2 TG results of PCMs after exposure on filter papers at 80 °C for 24 h.

Fig. S3 DSC curves of (a) C-700-75, (b) C-700-80, (c) C-700-85 and (d) C-700-88.

Fig. S4 DSC curves of (a) C-800-75, (b) C-800-80, (c) C-800-85 and (d) C-800-92.

Fig. S5 DSC curves of (a) C-900-75, (b) C-900-80, (c) C-900-85 and (d) C-900-90.

Fig. S6 DSC curve of pure paraffin.

Supporting material	Paraffin Ioading fraction (%)	Onset T _m (°C)	Peak T _m (°C)	End T _m (°C)
C-700	75	47.2	55.1	57.0
	80	47.3	55.9	58.2
	85	47.0	56.0	58.4
	88	47.9	55.9	59.0
C-800	75	47.1	54.3	56.2
	80	47.1	55.6	58.0
	85	47.1	55.5	57.6
	92	47.2	56.2	58.6
C-900	75	46.9	55.0	57.2
	80	46.8	55.6	58.1
	85	46.8	56.0	58.4
	90	46.8	56.1	58.4
Paraffin		46.7	56.2	59.7

Table S1 Melting temperature (T_m) fo the PCMs

Fig. S7 Varying trend of (a) melting latent heat and (b) freezing latent heat of PCMs after thermal cycling. ΔH_{m0} and ΔH_m are melting latent heat before and after thermal cycling, respectively; ΔH_{f0} and ΔH_f are freezing latent heat before and after thermal cycling, respectively.

Fig. S8 Thermal conductivity of pure paraffin and the asprepared PCMs.