Supporting Information

High-Rate Capability of Na₂FePO₄F Nanoparticles by Enhancing Surface Carbon Functionality for Na-Ion Batteries †

Jesse S. Ko,^{a,e} Vicky V. T. Doan-Nguyen,^{b,c} Hyung-Seok Kim,^a Xavier Petrissans,^a Ryan H. DeBlock,^a Christopher S. Choi,^a Jeffrey W. Long,^d and Bruce S. Dunn^{*a}

^a Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, United States

^b California NanoSystems Institute, University of California, Santa Barbara, Santa Barbara, Santa Barbara, CA 93106, United States

^c Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, Santa Barbara, CA 93106, United States

^d U.S. Naval Research Laboratory, Surface Chemistry Branch (Code 6170), Washington, DC, 20375, United States

^e U.S. Naval Research Laboratory–National Research Council Postdoctoral Associate, Washington, DC, 20375, United States

*Corresponding author: Bruce S. Dunn

Fig. S1. Transmission electron micrograph of NFPF-SSR.

Fig. S2. Thermogravimetric analysis/differential scanning calorimetry of NFPF-P heat-treated at 450°C under an inert atmosphere (argon) with an isothermal hold for 5 min at 450°C.

Fig. S3. (a) The X-ray diffraction phase analysis of the polyol-derived NFPF-P, argon-treated NFPF-450/Ar, and NFPF-rGO nanocomposite. (b) The X-ray diffraction patterns of NFPF-P heat-treated at various temperatures. Dotted red line indicates early stages of decomposition leading to oxidized Fe_2O_3 and metallic Fe.

Fig. S4. Cyclic voltammograms of (a) NPFF-P, (b) NFPF-450/Ar, and (c) NFPF-rGO cycled between 2.0-4.0 V vs. Na/Na⁺ from $0.1-5 \text{ mV s}^{-1}$.

Fig. S5. The *b*-value analysis [*log* (*peak current*, *i*) vs. log (*sweep rate*, $mV \cdot s^{-1}$)] of (**a**) NFPF-SSR, (**b**) NFPF-P, (**c**) NFPF-450/Ar, and (**d**) NFPF-rGO.

Fig. S6. Capacitive contribution determination of NFPF-SSR cycled at 1 mV s⁻¹.

Fig. S7. Determining the Warburg coefficient by the slope of the line in a plot of Re(Z) vs. $\omega^{-1/2}$.

Fig. S8. Galvanostatic charge–discharge curves of (a) NFPF-SSR, (b) NFPF-P, (c) NFPF-450/Ar, and (d) NFPF-rGO with C-rates imposed from C/10 to 20C.

Fig. S9. Galvanostatic cycling performance of (a) NFPF-SSR, (b) NFPF-P, (c) NFPF-450/Ar, and (d) NFPF-rGO measuring specific capacities and coulombic efficiencies from C/10 to 20C.