## **Supporting Information**

## Extremely Low Thermal Conductivity and High Thermoelectric Performance in Liquid-like Cu<sub>2</sub>Se<sub>1-x</sub>S<sub>x</sub> Polymorph Materials

Kunpeng Zhao<sup>1,2</sup>, Anders Bank Blichfeld<sup>3,4</sup>, Espen Eikeland<sup>3,5</sup>, Pengfei Qiu<sup>1\*</sup>, Dudi Ren<sup>1</sup>, Bo Brummerstedt Iversen<sup>3</sup>, Xun Shi<sup>1\*</sup>, and Lidong Chen<sup>1\*</sup>



Fig. S1. Synchrotron Rietveld refinements for  $Cu_2Se_{1-x}S_x$  (x = 0.2, 0.3, 0.5 and 0.7) samples.



**Fig. S2.** Rietveld refinements for PXRD with Co- $K_{\alpha}$  source for Cu<sub>2</sub>Se<sub>0.8</sub>S<sub>0.2</sub>, at (a) RT, (b) 400 K, (c) 450 K, (d) 475 K, (e) 500 K, and (f) 600 K. During refinement, a March-Dollase model for slight preferred orientation for (001) peaks was used for the hexagonal phase.

|                                                                | Temp.                                 |                  |                   | RT        | 400 K     | 450 K     | 475 K     | 500 K    | 600 K |
|----------------------------------------------------------------|---------------------------------------|------------------|-------------------|-----------|-----------|-----------|-----------|----------|-------|
|                                                                |                                       | R <sub>B</sub>   | (%)               | 4.35      | 5.19      | 5.17      | 5.60      | 5.26     | 4.74  |
|                                                                |                                       | R <sub>wp</sub>  | (%)               | 5.76      | 6.66      | 6.61      | 7.06      | 6.61     | 6.14  |
|                                                                |                                       | R <sub>exp</sub> | (%)               | 2.65      | 6.42      | 6.16      | 6.20      | 6.14     | 5.77  |
|                                                                |                                       | $\chi^2$         |                   | 2.18      | 1.04      | 1.07      | 1.14      | 1.08     | 1.06  |
| Trigonal<br>Cu <sub>2</sub> Se <sub>0.8</sub> S <sub>0.2</sub> | R3m                                   | a                | (Å)               | 4.0863(3) | -         | -         | -         | -        | -     |
|                                                                |                                       | c                | (Å)               | 20.268(2) | -         | -         | -         | -        | -     |
|                                                                | Se/S                                  | Ratio            |                   | 80/20     | _         | -         | -         | -        | -     |
|                                                                |                                       | х                |                   | 2/3       | -         | -         | -         | -        | -     |
|                                                                |                                       | у                |                   | 1/3       | -         | -         | -         | -        | -     |
|                                                                |                                       | Z                |                   | 0.5797(2) | -         | -         | -         | -        | -     |
|                                                                |                                       | $U_{\text{iso}}$ | (Å <sup>2</sup> ) | 0.025(1)  | -         | -         | -         | -        | -     |
|                                                                | Cu2                                   | X                |                   | 0.6917(3) | -         | -         | -         | _        | -     |
|                                                                |                                       | Z                |                   | 0.002(3)  | -         | -         | -         | -        | -     |
|                                                                |                                       | $U_{\text{iso}}$ | (Å <sup>2</sup> ) | 0.6008(8) | -         | -         | -         | -        | -     |
|                                                                | Cula                                  | X                |                   | 1/3       | -         | -         | -         | -        | -     |
|                                                                |                                       | У                |                   | 2/3       | -         | -         | -         | -        | -     |
|                                                                |                                       | Z                |                   | 0.7768(4) | -         | -         | -         | -        | -     |
|                                                                |                                       | $U_{iso}$        | (Å <sup>2</sup> ) | 0.008(2)  | -         | -         | -         | -        | -     |
|                                                                |                                       | Occ.             |                   | 0.620(7)  | -         | -         | -         | -        | -     |
|                                                                | Culb                                  | Z                |                   | 0.7169(7) | -         | -         | -         | -        | -     |
| Hexagonal                                                      | P6 <sub>3</sub> /mmc <sub>a</sub> (Å) |                  | (Å)               | 4.0702(1) | 4.0794(1) | 4.0863(1) | 4.0889(2) | 4.090(1) | -     |
| Cu <sub>2</sub> SC <sub>0.8</sub> S <sub>0.2</sub>             |                                       | c                | (Å)               | 6.8974(2) | 6.9220(3) | 6.9284(2) | 6.9305(3) | 6.936(1) | -     |
|                                                                | Se/S                                  | Ratio            |                   | 80/20     | 80/20     | 80/20     | 80/20     | 80/20    | -     |
|                                                                |                                       | Х                |                   | 2/3       | 2/3       | 2/3       | 2/3       | 2/3      | -     |
|                                                                |                                       | у                |                   | 1/3       | 1/3       | 1/3       | 1/3       | 1/3      | -     |
|                                                                |                                       | Z                |                   | 3/4       | 3/4       | 3/4       | 3/4       | 3/4      | -     |
|                                                                |                                       | $U_{iso}$        | (Å <sup>2</sup> ) | 0.0227(7) | 0.0334(7) | 0.0373(9) | 0.031(2)  | 0.0376   | -     |
|                                                                | Cul                                   | x = y            |                   | 0         | 0         | 0         | 0         | 0        | -     |
|                                                                |                                       | Z                |                   | 1/4       | 1/4       | 1/4       | 1/4       | 1/4      | -     |
|                                                                |                                       | $U_{iso}$        | (Å <sup>2</sup> ) | 0.043(2)  | 0.042(2)  | 0.018(2)  | 0.024(6)  | 0.059    | -     |
|                                                                |                                       | Occ.             |                   | 0.735(6)  | 0.675(6)  | 0.632(6)  | 0.59(2)   | 0.695    | -     |

 Table S1. Detailed Rietveld analysis for the PXRD results shown in Fig. S2.

|                                                             | Cu2  | Х                                      |                   | 0.3945(9) | 0.3985(7) | 0.4039(6) | 0.408(2)  | _            | -            |
|-------------------------------------------------------------|------|----------------------------------------|-------------------|-----------|-----------|-----------|-----------|--------------|--------------|
|                                                             |      | Z                                      |                   | 0.5671(3) | 0.5713(3) | 0.5712(4) | 0.5803(8) | -            | -            |
|                                                             |      | U <sub>iso</sub>                       | (Å <sup>2</sup> ) | 0.041(3)  | 0.042(2)  | 0.018(2)  | 0.024(6)  | -            | -            |
|                                                             |      | Occ.                                   | ·<br>·            | 0.197(2)  | 0.182(2)  | 0.182(2)  | 0.170(5)  | -            | -            |
| Cubic<br>Cu <sub>2</sub> Se <sub>0.8</sub> S <sub>0.2</sub> | Fm3m | a                                      | (Å)               | 5.730(3)  | 5.7959(2) | 5.8121(2) | 5.81899(8 | ) 5.82296(6) | ) 5.83337(6) |
|                                                             | Se/S | Ratio                                  |                   | 80/20     | 80/20     | 80/20     | 80/20     | 80/20        | 80/20        |
|                                                             |      | $\mathbf{x} = \mathbf{y} = \mathbf{z}$ |                   | 0         | 0         | 0         | 0         | 0            | 0            |
|                                                             |      | U <sub>iso</sub>                       | (Å <sup>2</sup> ) | 0.028     | 0.045(2)  | 0.061(1)  | 0.0468(6) | 0.0461(5)    | 0.0498(4)    |
|                                                             | Cu1  | $\mathbf{x} = \mathbf{y} = \mathbf{z}$ | 1/4               | 1/4       | 1/4       | 1/4       | 1⁄4       | 1⁄4          | 1/4          |
|                                                             |      | U <sub>iso</sub>                       | (Å <sup>2</sup> ) | 0.0412    | 0.12(1)   | 0.068(2)  | 0.073(4)  | 0.063(3)     | 0.061(3)     |
|                                                             |      | Occ.                                   |                   | 0.594     | 0.73(9)   | 0.424(5)  | 0.41(3)   | 0.36(2)      | 0.29(2)      |
|                                                             | Cu2  | x = y = z                              |                   | 0.326     | 0.33(2)   | 0.375(2)  | 0.320(3)  | 0.318(1)     | 0.317(1)     |
|                                                             |      | Occ.                                   |                   | 0.0714    | 0.03(2)   | 0.025(1)  | 0.093(5)  | 0.108(3)     | 0.111(3)     |



Fig. S3. Temperature dependence of Lorenz number for  $Cu_2Se_{1-x}S_x$  (x= 0, 0.2, 0.3, 0.5, 0.7, and 1.0) samples.



Fig. S4. Mass fluctuation scattering parameter  $\Gamma_M$  and strain field fluctuation scattering parameter

 $\Gamma_S$  as a function of the S-alloying content.



Fig. S5. Repeatability test on electronic transport properties in  $Cu_2Se_{0.8}S_{0.2}$  sample.