Supporting Information

Pyridinium Functionalized Coordination Containers as a Highly Efficient Electrocatalyst for Sustainable Oxygen Evolution

N. Bhuvaneswari,^{a,b} K. P. Annamalai,^a Feng-Rong Dai,^{a*} and Zhong-Ning Chen^{a*}

^aState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter,

Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.

^bUniversity of Chinese Academy of Sciences, Beijing, 100039, P. R. China.

	1-Co	1-Ni		
Empirical formula	$C_{160}H_{186}N_{12}O_{50}Co_8S_8Br_2$	$C_{136}H_{130}N_4O_{42}Ni_8S_8Br_2$		
Formula weight	3964.94	3378.41		
Temperature (K)	298(2) K	298(2) K		
Wavelength	0.71073 Å	0.71073 Å		
Crystal system	Triclinic	Triclinic		
space group	<i>P</i> -1	<i>P</i> -1		
<i>a</i> (Å)	13.420(7)	13.404(8)		
<i>b</i> (Å)	14.187(6)	13.953(7)		
<i>c</i> (Å)	26.269(14)	26.278(17)		
a(°)	80.00(2)	79.49(3)		
β (°)	81.54(2)	81.51(3)		
γ(°)	66.431(16)	65.614(19)		
$V(Å^3)$	4498(4)	4387(5)		
Ζ	1	1		
$D(calcd) (g cm^{-3})$	1.464	1.279		
μ (Mo K_{α}) (mm ⁻¹)	1.337	1.457		
<i>F</i> (000)	2044	1732		
θ range (°)	2.088 - 24.998	2.104 - 25.000		
Limiting indices	-15<=h<=15 -16<=k<=16 -31<=l<=31	-15<=h<=15 -16<=k<=16 -31<=l<=31		
Reflections collected / unique	40439 / 15768 [$R_{int} = 0.0575$]	40053 / 15420 [$R_{int} = 0.0686$]		
Data / restraints / parameters	15768 / 42 / 1081	15420 / 13 / 929		
GOF	1.063	1.005		
$R_1 (I > 2\sigma(I))$	0.1021	0.0989		
$wR_2(I>2\sigma(I))$	0.2987	0.2727		
R_1 (all data)	0.1266	0.1498		
wR_2 (all data)	0.3256	0.3053		
$\Delta \rho / e A^{\circ -3}$	2.461, -1.347	1.041, -0.597		

 Table S1. Crystallographic Data for Compounds 1-Co and 1-Ni.

Samples	Electrolyte	η (V) at 10 mA/cm ²	Tafel values (mV/dec)	Capacitance mF/cm ²	Stability	Reference
1-C0	1.0 M KOH	0.290	75	133	>48 h	This work
1-Ni	1.0 M KOH	0.302	110	40	>48 h	This work
MAF-X-27	1.0 M KOH	0.292	127	-	>24 h	1
OH						
Co-NU-	0.1M	>0.4	90	-	>10 h	2
1000	Na ₂ SO ₄ /Na					
	OH					
Pb-TCPP	1.0 M KOH	1.70 vs RHE	106	-	>100	3
					cycles	
Co/Co ₉ S ₈ @	0.1 M KOH	0.29	96	-	>1000	4
S,N doped					cycles	
porous						
graphene						
Co ₂ P/CNT-	1.0 M KOH	0.292	68	25	>2000	5
900					cycles	
CoN	1.0 M KOH	0.29	72	92	>30 h	6
nanowire						
Ni0.5C00.5-	1.0 M KOH	0.3	91	26	>10 h	7
Nanocarbon						
Co-	1.0 M KOH	0.34	69	22.3	>25 h	8
MOF/CNT						
Ni-Mo ₂ C/PC	1.0 M KOH	0.368	-	11.2	>10 h	9

Table S2. Comparison of OER performance of recently reported catalysts and our functionalized coordination containers.

Note: TCPP=Tetra(carboxyphenyl)porphyrin); CNT= Carbon nanotube; PC= Porous carbon.

Fig. S1. ORTEP drawing of the asymmetric unit of 1-Co (thermal ellipsoids with 30% probability).

Fig. S2. ORTEP drawing of the asymmetric unit of 1-Ni (thermal ellipsoids with 30% probability).

Fig. S3. FT-IR spectra of as-synthesized samples 1-Co, 1-Ni and H₂BrL1 linker.

Fig. S4. PXRD Pattern of 1-Co and 1-Ni.

Fig. S5. TGA of as-synthesized and activated samples of 1-Co and 1-Ni.

Fig. S6. UV-Visible absorption profiles of 1-Co, 1-Ni, and Co-dpmc in DMSO solution.

Fig. S7. Electrochemical impedance spectroscopy (EIS) Nyquist plots for **1-Co**, **1-Ni** and **Co-dpmc** electrodes. (Inset shows the magnified region).

Fig. S8. Linear sweep voltammetry (LSV) curves of metal oxides in 1M KOH.

Fig. S9. UV-Visible absorption spectra of electrolyte solution before and after electrolysis by using CoO_x and 1-Co as catalyst.

Fig. S10. CV curves of 1-Ni from 5 to 100 mV/s scan rates in the range of 1.16 to 1.26 V vs. RHE.

Fig. S11. CV curves of **Co-dpmc** from 5 to 100 mV/s scan rates in the range of 1.16 to 1.26 V vs. RHE.

Fig. S12. O1s spectra of 1-Co before and after electrolysis.

Fig. S13. TEM images of 1-Co (a) before and (b) after 1000 CV cycles.

Fig. S14. PXRD Pattern of cobalt oxide.

Fig. S15. PXRD Pattern of nickel oxide.

References

- 1. X.-F. Lu, P.-Q. Liao, J.-W. Wang, J.-X. Wu, X.-W. Chen, C.-T. He, J.-P. Zhang, G.-R. Li and X.-M. Chen, *J. Am. Chem. Soc.* 2016, **138**, 8336-8339.
- 2. C.-W. Kung, J. E. Mondloch, T. C. Wang, W. Bury, W. Hoffeditz, B. M. Klahr, R. C. Klet, M. J. Pellin, O. K. Farha and J. T. Hupp, *ACS Appl. Mater. Interfaces* 2015, **7**, 28223-28230.
- 3. F. Dai, W. Fan, J. Bi, P. Jiang, D. Liu, X. Zhang, H. Lin, C. Gong, R. Wang, L. Zhang and D. Sun, *Dalton Trans.* 2016, **45**, 61-65.
- 4. X. Zhang, S. Liu, Y. Zang, R. Liu, G. Liu, G. Wang, Y. Zhang, H. Zhang and H. Zhao, *Nano Energy* 2016, **30**, 93-102.
- 5. D. Das and K. K. Nanda, *Nano Energy* 2016, **30**, 303-311.
- 6. Y. Zhang, B. Ouyang, J. Xu, G. Jia, S. Chen, R. S. Rawat and H. J. Fan, *Angew. Chem. Int. Ed.* 2016, **55**, 8670-8674.
- 7. B. Bayatsarmadi, Y. Zheng, V. Russo, L. Ge, C. S. Casari and S.-Z. Qiao, *Nanoscale* 2016, **8**, 18507-18515.
- 8. Y. Fang, X. Li, F. Li, X. Lin, M. Tian, X. Long, X. An, Y. Fu, J. Jin and J. Ma, *J. Power Sources* 2016, **326**, 50-59.
- 9. Z.-Y. Yu, Y. Duan, M.-R. Gao, C.-C. Lang, Y.-R. Zheng and S.-H. Yu, *Chem. Sci.* 2017, **8**, 968-973.