Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Molecular-level superhydrophobic external-surface to improve the stability of metal-organic frameworks

Yuxiu Sun,^{a,b} Qi Sun,^b Hongliang Huang,^c Briana Aguila,^b Zheng Niu,^b Jason A. Perman,^{*,b} and Shengqian Ma^{*,b}

^a Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China;

^b Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States; *E-mail: <u>sqma@usf.edu</u> (SM);

perman@usf.edu (JAP)

^c State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.

Fig. S1 PXRD patterns and FT-IR spectra of (a,c) UiO-66-SO₃H, (b,d) PCN-222 before and after modification with OPA molecule.

Fig. S2 FT-IR spectrum of OPA molecule.

Fig. S3 SEM images of (a) UiO-66-SO₃H, (b) OPA-UiO-66-SO₃H, (c) PCN-222, and (d) OPA-PCN-222

Fig. S4 N₂ sorption isotherms for (a,b) UiO-66-SO₃H, (c,d) PCN-222 before and after OPA modification.

Fig. S5 Pore size distribution for (a) UiO-66, (b) UiO-66-SO₃H, and (c) PCN-222 before and after OPA modification.

Fig. S6 CO₂ adsorption and desorption isotherms for (a) UiO-66 and (b) OPA-UiO-66 samples at 273K.

Fig. S7 Photographs of OPA-UiO-66 samples after exposure to different oil solvents.

Fig. S8 PXRD patterns of OPA-UiO-66-SO₃H and OPA-PCN-222 sample after exposure to acidic solution for 7 days.

Fig. S9 PXRD patterns of OPA-PCN-222 samples after exposure to basic solutions.

Fig. S10 N₂ sorption isotherms for OPA-PCN-222 after exposure to basic water solutions for 7 days.

Fig. S11 Digital photograph of PCN-222 upon exposure to basic solution (pH=11).

Fig. S12 PXRD patterns of OPA-UiO-66-SO₃H sample after exposure to high ionic solutions for 7 days.

Fig. S13 PXRD patterns and FT-IR spectra of OPA-UiO-66 after absorption of different organic solvents.

Sample	Contact angle	ref
Fluorinated ZIF-90	152.4 °	9
NMOF-1	160-162 °	12
UHMOF-100	176 °	14
SH ZIF-67	146 °	19
UPC-21	145 °	27
Cu ₃ (NH-AM10-BTC) ₂	147 °	31
OPA-UiO-66	160 °	This work

Table S1 Water contact angle for OPA-UiO-66 and other hydrophobic MOFs.