Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Efficient porous molybdenum diselenide catalyst for electrochemical hydrogen generation

Sujittra Poorahong^a, Ricardo Izquierdo^b, and Mohamed Siaj^{a*}

^aDepartment of Chemistry and Biochemistry, Université du Quebec à Montréal, Montréal QC, H3C 3P8, Canada

^bDepartment of Computer Science, Université du Québec à Montréal, Montréal, QC, H3C 3P8, Canada

*E-mail: siaj.mohamed@uqam.ca

Figure S1 EDS spectrum of pure $MoSe_2$ film, pure Cu_3Se_2 film and composite Mo/Cu obtained from 2:2 volume ratio.

Figure S2 The survey XPS spectrum of Mo3d, Cu2p and Se3d obtained from pure $MoSe_2$ film, pure Cu_3Se_2 film and composite Mo/Cu obtained from 2:2 volume ratio before and after etched copper components out.

Figure S3 SEM images obtained from the volume ratio of 0.08 M Mo and 0.04 M Cu plating solution 4:1 before etching process, with applied potential at -0.6 V for 20 mC. The red arrows show the location of the copper before etching.

Figure S4 SEM images of 4:1 volume ratio of 0.08 M Mo: 0.04 M Cu at deposition potential (A) -0.4 V (B) -0.8 V for 20 mC.

Figure S5 LSV polarization curves for bare carbon electrodes, 0.04 M MoSe₂ film, porous MoSe₂ and Pt in N₂-purged 0.5 M H₂SO₄ solution. Scan rate: 1 mV s^{-1} .