Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Information

A wide visible light driven complex perovskite Ba(Mg_{1/3}Ta_{2/3})O_{3-x}N_y photocatalyst for water oxidation and reduction

Junyan Cui,^{ab} Taifeng Liu,^b Yu Qi,^b Dan Zhao,^b Mingjun Jia,^a Gang Liu,^a Fuxiang Zhang^{*b} and Can Li^{*b}

^a Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Changchun 130012, China.
^b State Key Laboratory of Catalysis, 2011-iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, China. P. R. China

*To whom corresponding author should be addressed.

TEL: +86-411-84379070, FAX: +86-411-84694447,

E-mail: fxzhang@dicp.ac.cn; canli@dicp.ac.cn; Web: http://www.canli.dicp.ac.cn

Fig S1. Representative HRSEM images of BMTO and BMTON samples.

Fig S2. Mg 1s XPS spectra of the BMTO and BMTON samples.

Fig S3. XPS spectra of BMTON samples: (A) Pt 4f; (B) Ba $3d_{5/2}$ and Co $2p_{3/2}$.

Fig S4. The HRSEM images of typical samples: (A) 0.5 *wt*% Pt/BMTON; (B) 1.0 *wt*% $CoO_x/BMTON$, and the elemental mappings of $CoO_x/BMTON$: (C) Ta element; (D) N element; (E) Co element; (F) simulated dispersion of CoO_x and BMTON.

Entry	Sample	Sacrificial reagent	The rate of gases evolution
Water reduction half reaction (H ₂)	Pt	methanol	0 μmol h ⁻¹
	BMTON	methanol	0 μmol h ⁻¹
	Pt/BMTON	methanol	0.9 μmol h ⁻¹
Water oxidation half reaction (O_2)	Co ₃ O ₄	AgNO ₃	0 μmol 0.5 h ⁻¹
	BMTON	AgNO ₃	1.4 μmol 0.5 h ⁻¹
	CoO _x /BMTON	AgNO ₃	3.5 μmol 0.5 h ⁻¹

Table S1. Photocatalytic performances of typical samples under visible light irradiation ($\lambda \ge 420$

nm).

Reaction conditions: 150 mL of 20 v% methanol aqueous solution (for H₂ evolution half reaction) or 0.01 M AgNO₃ aqueous solution (for O₂ evolution half reaction) with 0.15 g of the sample; 0.15 g of La₂O₃; 300 W xenon lamp ($\lambda \ge 420$ nm).

Entry	The nitrided samples at different temperature	Cocatalyst	Sacrificial reagent	The rate of gases evolution
Water reduction half reaction (H ₂)	923 K	Pt	methanol	trace
	1023 K	Pt	methanol	0.2 μmol h ⁻¹
	1123 K	Pt	methanol	0.3 μmol h ⁻¹
	1223 K	Pt	methanol	0.9 μmol h ⁻¹
Water oxidation half reaction (O_2)	923 K	CoO _x	AgNO ₃	trace
	1023 K	CoO _x	AgNO ₃	1.9 μmol 0.5 h ⁻¹
	1123 K	CoO _x	AgNO ₃	2.2 μmol 0.5 h ⁻¹
	1223 K	CoO _x	AgNO ₃	3.5 μmol 0.5 h ⁻¹

Table S2. Photocatalytic performances of typical photocatalysts under visible light irradiation ($\lambda \ge 420$ nm).

Reaction conditions: 150 mL of 20 v% methanol aqueous solution (for H₂ evolution half reaction) or 0.01 M AgNO₃ aqueous solution (for O₂ evolution half reaction) with 0.15 g of the photocatalyst; 0.15 g of La₂O₃; 300 W xenon lamp ($\lambda \ge 420$ nm).

Fig S5. Pt 4f XPS spectra of 0.5 wt% Pt/BMTON samples before and after photocatalytic

hydrogen evolution half reaction.

Fig S6. XRD patterns of BMTON samples before and after photocatalytic hydrogen evolution reaction.