Physisorption-Induced Structural Change Directing Carbon Monoxide Chemisorption and Nitric Oxide Coordination on Hemilabile Porous Metal Organic Framework NaNi₃(OH)(SIP)₂(H₂O)₅·H₂O (SIP = 5-sulfoisophthalate)

Jon.G. Bell¹, Samuel. A. Morris², Farida. Aidoudi², Laura J. McCormick^{2,3}, Russell E. Morris², K. Mark Thomas^{1*}

¹Wolfson Northern Carbon Reduction Laboratories, School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K. *Email: mark.thomas@ncl.ac.uk

²School of Chemistry, Purdie Building, St Andrews University, North Haugh, St Andrews, Fife KY16 9ST, U.K.

³Experimental Systems Group, Advanced Light Source, Berkeley, California, USA

Supporting Information

Conte	nts	Page
S1	Activation of porous structure	S4
S1.1	Temperature Programmed Thermogravimetric analysis of	S4
	NaCo ₃ (OH)(SIP) ₂ (H ₂ O) ₅ ·H ₂ O and NaNi ₃ (OH)(SIP) ₂ (H ₂ O) ₅ ·H ₂ O	
	under ultra-high vacuum using the IGA system	
S1.2	Powder X-ray diffraction profiles and crystallographic information S4	
S2	CO adsorption/desorption isotherms	S 8
S2.1	NaNi ₃ (OH)(SIP) ₂	S 8
S2.1.1	CO adsorption isotherms for NaNi ₃ (OH)(SIP) ₂	S 8
S2.1.2	CO low pressure kinetic desorption profile	S11
S2.1.3	CO loading experiments	S12
S2.1.4	Activation of NaNi ₃ (OH)(SIP) ₂ (H ₂ O) ₅ ·H ₂ O under ultra-high	S14
	vacuum at 403 K to give NaNi ₃ (OH)(SIP) ₂ (H ₂ O) ₂ for comparison	
	with XRD measurements	
S2.1.5	CO desorption kinetics for NaNi ₃ (OH)(SIP) ₂ (H ₂ O) ₂ degassed at 403 K	S15
S2.2	NaCo ₃ (OH)(SIP) ₂	S15
S2.2.1	CO adsorption/desorption isotherms for NaCo ₃ (OH)(SIP) ₂	S15
	after degas at 448 K	
S2.2.2	CO desorption kinetic profile for NaCo ₃ (OH)(SIP) ₂ degassed at 448 K	S16
S3	Comparison of carbon dioxide adsorption before and	S17
	after CO adsorption	
S4	Virial analysis	S18
S4.1	CO adsorption on NaNi ₃ (OH)(SIP) ₂	S18
S4.2	CO adsorption on NaCo ₃ (OH)(SIP) ₂	S20
S 5	Clausius-Clapeyron Graphs	S21
S5.1	CO adsorption on NaNi ₃ (OH) ₂ (SIP) ₂	S21
S5.2	CO adsorption on NaCo ₃ (OH) ₂ (SIP) ₂ (degas temperature 448 K)	S22
S6	Enthalpy and entropy of adsorption for NaNi ₃ (OH)(SIP) ₂	S23
	and NaCo ₃ (OH)(SIP) ₂	
S7	Ideal adsorbed solution theory: CO/ N_2 selectivity at 348 K	S29

S7.1	Comparison of CO and N_2 adsorption isotherms for $NaNi_3(OH)(SIP)_2$	S30
	and NaCo ₃ (OH)(SIP) ₂ at 348 K	
S7.2	Comparison of CO/N ₂ selectivity for adsorption of 1:1 mixture on	S32
	NaNi ₃ (OH)(SIP) ₂ and NaCo ₃ (OH)(SIP) ₂ at 348 K	
S8	In-situ temperature programmed desorption (TPD) studies	S33
S8.1	NaNi ₃ (OH)(SIP) ₂	S33
S8.1.1	In-situ TPD under ultra-high vacuum after sequential CO isotherms	S33
S8.1.2	In-situ temperature programmed desorption with simultaneous	S34
	thermogravimetric and dynamic mass spectrometry under helium	
	for NaNi ₃ (OH)(SIP) ₂ after CO treatment for 2 weeks at 348 K	
S9	Temperature programmed thermogravimetric analysis coupled	S36
	with mass spectrometry in flowing helium (ex-situ measurements)	
S9.1	Experimental	S36
S9.2	Results and Discussion	S36
S10	Scanning electron microscopy	S41
	References	S42

<u>S1</u> Activation of porous structure

S1.1 Thermogravimetric analysis NaCo₃(OH)(SIP)₂(H₂O)₅·H₂O and NaNi₃(OH)(SIP)₂(H₂O)₅·H₂O of under ultra-high vacuum using the IGA system

The Temperature Programmed Thermogravimetric Profiles give the following stoichiometry: degas 400 K - NaNi₃(OH)(SIP)₂ (H₂O)₂ and degas at > 500 K - NaNi₃(OH)(SIP)₂

Figure S1. Temperature programmed thermogravimetric profiles for $NaCo_3(OH)(SIP)_2(H_2O)_5 \cdot H_2O$ and $NaNi_3(OH)(SIP)_2(H_2O)_5 \cdot H_2O$ under ultra-high vacuum at a heating rate of 1 K min⁻¹

S1.2 Powder X-ray diffraction profiles and crystallographic information

a)

Figure S2 PXRD profiles for a) NaNi₃(OH)(SIP)₂(H₂O)₅·H₂O (Rietveld Refinement from 3 – 38° gave R_wp = 6.84% in the space group P-1. Black line is the experimental data, red is the calculated fit and the blue is the difference curve); b) NaNi₃(OH)(SIP)₂(H₂O)₂ degassed under vacuum at 400 K (Rietveld Refinement from 3 – 38 °20. gave R_wp = 7.14% in the space group P-1. Black line is the experimental data, red is the calculated fit and the blue is the difference curve; c) NaNi₃(OH)(SIP)₂ degassed at 573 K (Pawley refinement gave R_wp = 4.68% in space group P-1. Black line is the experimental data, red is the calculated fit and the blue is the blue is the difference curve; c) NaNi₃(OH)(SIP)₂ degassed at 573 K (Pawley refinement gave R_wp = 4.68% in space group P-1. Black line is the experimental data, red is the calculated fit and the blue is the blue is the difference curve)

Fresh $NaNi_3(OH)(SIP)_2(H_2O)_5 \cdot H_2O$. CIF file RT-1

Space Group P-1. $a = 9.8590(11) \text{ Å}, b = 11.0355(13) \text{ Å}, c = 12.567(14) \text{ Å}, \alpha = 104.782(2)^{\circ}, \beta = 89.974(2)^{\circ}, \gamma = 109.954(2)^{\circ}, V = 1237.01 \text{ Å}^3$

Degas 400 K NaNi₃(OH)(SIP)₂ (H₂O)₂. CIF file 400K-1 and 400K-2

Cif file 400K-1: Space Group P-1. a = 9.8415(13) Å, b = 11.0066(15) Å, c = 12.6355(17) Å, $\alpha = 104.131(3)^\circ$, $\beta = 92.127(3)^\circ$, $\gamma = 110.798(3)^\circ$, V = 1229.17 Å³

NO Reaction with NaNi₃(OH)(SIP)₂ (H₂O)₂. CIF File 400K-NO

Space Group P-1. $a = 9.8979(17) \text{ Å}, b = 10.9915(18) \text{ Å}, c = 12.589(2) \text{ Å}, \alpha = 104.603(3)^{\circ}, \beta = 91.331(3)^{\circ}, \gamma = 110.658(3)^{\circ}, V=1230.58 \text{ Å}^3$

CO Reaction with NaNi₃(OH)(SIP)₂ (H₂O)₂. CIF File 400K-CO

Space Group P-1. a = 9.8418(16) Å, b = 10.9891(18) Å, c = 12.587(2) Å, $\alpha = 104.340(3)^{\circ}$, $\beta = 91.715$ (3)°, $\gamma = 110.678(3)^{\circ}$, V = 1223.55Å³

Degas 448 K NaCo₃(OH)(SIP)₂: CIF file NaCoSIP

Space Group P-1. a = 9.972(4) Å, b = 11.192(5)(15) Å, c = 12.679(5) Å, $\alpha = 104.544(9)^{\circ}$, $\beta = 90.078(9)^{\circ}$, $\gamma = 110.086(9)^{\circ}$, V = 1280.42 Å³

Degas 573 K PXRD NaNi₃(OH)(SIP)₂

Space Group P-1 with unit cell dimensions and this gave the following: a = 10.8516(5) Å, b = 11.1792(5) Å, c = 12.5215(5) Å, $\alpha = 98.575(3)^{\circ}$, $\beta = 106.154(3)^{\circ}$, $\gamma = 67.916(3)^{\circ}$, V = 1350.3(1) Å³

CCDC Numbers for CIP Files

CoNaSIP = CCDC 1553467

 $RT-1 = CCDC \ 1553050$

400K-1 = CCDC 1553052

400K-CO = CCDC 1553053

400K-NO = CCDC 1553051

Calculation of void volume of fully dehydrated NaNi₃(OH)(SIP)₂

Void volume for NaNi₃(OH)(SIP)₂(H₂O)₅·H₂O = 25 Å³ / 1237.0 Å³

Void volume for NaNi₃(OH)(SIP)₂ (H₂O)₂ = 190.1 Å³ / 1229.2 Å³

Framework volume for NaNi₃(OH)(SIP)₂ (H₂O)₂ = 1039.1 Å³

NaNi₃(OH)(SIP)₂(H₂O)₅·H₂O has 5 framework bound water molecules. Removal of 3 removed by partial dehydration to give NaNi₃(OH)(SIP)₂ (H₂O)₂, resulted in an increase in pore volume of 190.1 - 25 Å³ = 165.1 Å³, i.e. approximately 55 Å³ per water.

The loss of a further two water molecules from NaNi₃(OH)(SIP)₂ (H₂O)₂ to give NaNi₃(OH)(SIP)₂, leads to a fully dehydrated framework volume of 1039.1 Å³ – (2*55 Å³) = 929.1 Å³.

Cell volume for NaNi₃(OH)(SIP)₂ from Pawley fit = 1350.3 Å³

Void volume for NaNi₃(OH)(SIP)₂ = 1350.3 Å³ - 929.1 Å³ = 421.2 Å³

Void volume (%) for NaNi₃(OH)(SIP)₂ = 421.2 Å³ / 1350.3 Å³ = 31.2%

Density of $NaNi_3(OH)(SIP)_2$ framework = 1.728 g cm⁻³

Crystallographic void volume = $0.1805 \text{ cm}^3 \text{ g}^{-1}$

S2.1 NaNi₃(OH)(SIP)₂

S2.1.1 CO adsorption/desorption isotherms for NaNi₃(OH)(SIP)₂

a)

d)

f)

Figure S3. High pressure CO adsorption/desorption isotherms for NaNi₃(OH)(SIP)₂ a) low pressure comparison b) 273 K, c) 283 K, d) 293 K, e) 303 K, f) 313 K and g) 333 K

S2.1.2 CO low pressure desorption kinetic profiles at 348 K

Figure S4: Carbon monoxide desorption kinetic profile for $NaNi_3(OH)(SIP)_2$ under ultrahigh vacuum at 348 K

a)

d)

Figure S5. CO adsorption/ desorption isotherms for NaNi₃(OH)(SIP)₂ at 348 K for maximum pressures of a) 5 bar, b) 10 bar, c) 15 bar, d) 17 bar.

Figure S6. Repeatability of CO adsorption isotherm loading experiments for different samples of NaNi₃(OH)(SIP)₂ at 348 K over the pressure range 5 – 17 bar.

S2.1.4 Activation of NaNi₃(OH)(SIP)₂(H₂O)₅·H₂O under ultra-high vacuum at 403 K to give NaNi₃(OH)(SIP)₂(H₂O)₂ for comparison with XRD measurements

Figure S7. CO adsorption/ desorption isotherms at 348 K up to 20 bar for NaNi₃(OH)(SIP)₂(H₂O)₂

S2.1.5 CO Desorption kinetics for NaNi₃(OH)(SIP)₂ (H₂O)₂ degassed at 403 K

Figure S8. Kinetic profile for desorption of CO from $NaNi_3(OH)(SIP)_2(H_2O)_2$ for pressure decrement 250 - 0 mbar

S2.2 NaCo₃(OH)(SIP)₂

S2.2.1 CO adsorption/desorption isotherms for NaCo₃(OH)(SIP)₂

a)

Figure S9. CO adsorption/ desorption isotherms on NaCo₃(OH)(SIP)₂ a) 268 – 303 K up to 1 bar and b) 348 K up to 5 bar

S2.2.2 CO desorption kinetics profile for NaCo₃(OH)(SIP)₂

Figure S10. Kinetic profile for desorption of CO at 348 K from NaCo₃(OH)(SIP)₂ for pressure decrement 250 – 0 mbar

S3.0 Comparison of carbon dioxide adsorption isotherms before and after CO Adsorption

Figure S11. CO₂ adsorption isotherms basis a) Comparison on a relative pressure of NaNi₃(OH)(SIP)₂ and NaCo₃(OH)(SIP)₂ at 195 K prior to CO treatment with NaNi₃(OH)(SIP)₂ and NaCo₃(OH)(SIP)₂ after CO adsorption at 348 K b) NaNi₃(OH)(SIP)₂(H₂O)₂ at 273 K and up to 20 bar

Figure S12. Isotherm for CO₂ Adsorption at 273 K for NaNi₃(OH)(SIP)₂ degassed at 513K after CO adsorption at 348 K

S4.0 Virial analysis

S4.1 CO adsorption on NaNi₃(OH)(SIP)₂ (Degas Temperature 513 K)

Table S1. Virial Parameters for CO Adsorption on $NaNi_3(OH)(SIP)_2$ (Degas Temperature 513 K) in the Temperature Range 273 – 343 K

Temperature	Temperature	A ₀ (ln(mol	A ₀ error	A ₁ (g mol ⁻¹)	A ₁ error (g
(K)	error (K)	g ⁻¹ Pa ⁻¹))	(ln(mol g-1		mol ⁻¹)
			Pa-1))		
273.125	0.004	-16.105	0.015	-347.5	20.6
283.140	0.008	-16.645	0.036	-498.8	56.8
293.139	0.009	-17.090	0.020	-605.5	28.5
303.125	0.004	-17.613	0.011	-598.7	14.6
313.137	0.007	-18.120	0.005	-517.7	7.7
323.134	0.013	-18.539	0.004	-539.5	7.7
333.105	0.005	-18.856	0.005	-712.7	13.3
343.114	0.007	-19.212	0.004	-676.8	15.9

Table S2. Virial Parameters for CO Adsorption on $NaCo_3(OH)(SIP)_2$ (Degas Temperature 448 K) in the Temperature Range 268 – 303 K

Temperature (K)	Temperature error (K)	A ₀ (ln(mol g ⁻¹ Pa ⁻¹))	A ₀ error (ln(mol g-1 Pa-1))	A ₁ (g mol ⁻¹)	A ₁ error (g mol ⁻¹)
268.139	0.041	-17.479	0.012	-522.3	22.5
273.120	0.010	-17.633	0.009	-586.9	12.6
283.135	0.013	-18.102	0.010	-529.6	18.8
293.146	0.010	-18.491	0.006	-542.8	13.6
303.124	0.004	-18.849	0.003	-550.3	10.1

Figure S13. The variation of ln(n/p) vs. surface excess for CO adsorption on NaNi₃(OH)(SIP)₂ (degas temperature 513 K) over the temperature range 273 – 343 K and up to 1 bar

Figure S14. Graph of A_0 vs. 1/T for CO adsorption on $NaNi_3(OH)(SIP)_2$ (degas temperature 513 K) over the temperature range 273 – 343 K

S4.2 CO adsorption on NaCo₃(OH)(SIP)₂

Figure S15. Graphs of ln(n/p) vs. surface excess for CO adsorption on NaCo₃(OH)(SIP)₂ (degas temperature 448 K) over the temperature range 268 K – 303 K

Figure S16. Graphs of A_0 vs. 1/T for CO adsorption on NaCo₃(OH)(SIP)₂ (degas temperature 448 K) over the temperature range 268 K – 303 K

S5.0 Clausius-Clapeyron graphs

S5.1 CO adsorption on NaNi₃(OH)₂(SIP)₂

Figure S17. Graphs of ln(P) vs. 1/T for CO adsorption on NaNi₃(OH)(SIP)₂ over the temperature range 273 K - 303 K and uptake range 0.5 - 3.0 mmol g⁻¹

Figure S18. Graphs of ln(P) vs. 1/T for CO adsorption on $NaNi_3(OH)(SIP)_2$ over the temperature range 313 K – 348 K and uptake range $0.5 - 3.0 \text{ mmol g}^{-1}$

Figure S19. Graphs of ln(P) vs. 1/T for CO adsorption on NaNi₃(OH)(SIP)₂ over the temperature range 273 K – 348 K and uptake range after the point of isotherm inflection, which corresponds to $1.75 - 3.00 \text{ mmol g}^{-1}$.

S5.2 CO adsorption on NaCo₃(OH)₂(SIP)₂(degas temperature 448 K)

a)

Figure S20. Graphs of ln(P) vs. 1/T for a) 0.05 - 0.45 mol g⁻¹ and b) 0.5 - 0.85 mol g⁻¹

S6.0 Enthalpy and entropy of adsorption for NaNi₃(OH)₂(SIP)₂ and NaCo₃(OH)(SIP)₂

Amount	Enthalpy of	Error/ kJ mol ⁻¹	Entropy of	Error/ kJ mol ⁻¹
Adsorbed/	Adsorption/ kJ		Adsorption/ kJ	
mmol g ⁻¹	mol ⁻¹		mol ⁻¹	
0.15	49.29	5.84	-199.93	1.36
0.20	44.76	3.78	-187.49	0.88
0.25	42.85	2.77	-183.19	0.64
0.30	41.73	2.13	-181.14	0.49
0.35	41.36	1.50	-181.42	0.55
0.40	41.24	1.05	-182.31	0.42
0.45	41.14	0.72	-183.14	0.32
0.50	40.78	0.45	-182.95	0.31
0.55	40.34	0.62	-182.50	0.19
0.60	40.18	0.70	-182.92	0.17
0.65	40.20	0.73	-183.88	0.05
0.70	40.30	0.75	-185.03	0.01
0.75	40.66	0.73	-187.05	0.27
0.80	40.80	0.84	-188.33	0.13
0.85	39.78	0.68	-185.68	0.31
0.90	39.28	0.53	-184.78	0.19
0.95	38.97	0.39	-184.48	0.22
1.00	38.85	0.34	-184.82	0.07

Table S3. Enthalpy and Entropy of CO Adsorption on NaNi₃(OH)(SIP)₂): 273 – 303 K

1.05	38.81	0.59	-185.45	0.33
1.10	39.12	0.72	-187.26	0.16
1.15	40.16	0.87	-191.49	0.28
1.20	41.26	0.65	-195.69	0.56
1.25	41.80	0.89	-197.91	0.65
1.30	42.06	0.71	-199.05	0.24
1.35	42.26	0.43	-199.94	0.36
1.40	42.44	0.20	-200.79	0.34
1.45	42.42	0.15	-200.91	0.17
1.50	42.22	0.18	-200.37	0.05
1.55	42.03	0.22	-199.86	0.05
1.60	41.84	0.25	-199.37	0.05
1.65	41.67	0.27	-198.93	0.02
1.70	41.52	0.27	-198.53	0.01
1.75	41.37	0.28	-198.16	0.01
1.80	41.22	0.28	-197.79	0.01
1.85	41.08	0.28	-197.45	0.01
1.90	40.94	0.28	-197.11	0.01
1.95	40.83	0.28	-196.86	0.01
2.00	40.73	0.23	-196.69	0.07
2.05	40.56	0.14	-196.25	0.11
2.10	40.40	0.06	-195.83	0.11
2.15	40.23	0.02	-195.42	0.08
2.20	40.07	0.04	-194.99	0.04
2.25	39.91	0.07	-194.58	0.04
2.30	39.75	0.10	-194.19	0.04
2.35	39.60	0.12	-193.81	0.04
2.40	39.49	0.16	-193.57	0.05
2.45	39.43	0.20	-193.52	0.08
2.50	39.38	0.25	-193.48	0.08
2.55	39.32	0.30	-193.44	0.08
2.60	39.29	0.29	-193.47	0.05
2.65	39.27	0.26	-193.59	0.18
2.70	38.93	0.40	-192.60	0.22
2.75	38.54	0.58	-191.43	0.26
2.80	38.16	0.74	-190.32	0.25
2.85	37.81	0.89	-189.27	0.24
2.90	37.47	1.04	-188.28	0.24
2.95	37.06	0.93	-187.06	0.16
3.00	36.54	1.05	-185.53	0.43
3.05	35.85	1.61	-183.47	1.05
3.10	35.63	1.93	-183.10	0.54
3.15	35.41	2.02	-182.76	0.35

Amount Adsorbed/	Enthalpy of Adsorption/ kJ	Error/ kJ mol ⁻¹	Entropy of Adsorption/ kJ	Error/ kJ mol ⁻¹
mmol ^{g-1}	mol ⁻¹		mol ⁻¹	
0.10	34.42	5.73	-146.16	5.74
0.15	33.82	3.67	-148.40	2.34
0.20	33.95	3.18	-151.60	0.69
0.25	33.78	2.68	-153.26	0.70
0.30	33.78	2.99	-155.00	0.48
0.35	33.85	3.38	-156.69	0.59
0.40	33.88	3.48	-158.08	0.16
0.45	33.91	2.99	-159.34	0.81
0.50	33.71	2.57	-159.81	0.68
0.55	33.72	2.48	-160.84	0.14
0.60	33.55	2.89	-161.23	0.73
0.65	33.30	3.36	-161.24	0.87
0.70	33.02	3.17	-161.22	0.29
0.75	32.77	2.87	-161.27	0.52
0.80	32.50	2.40	-161.21	0.83
0.85	32.06	2.39	-160.54	0.04
0.90	31.96	2.60	-160.90	0.42
0.95	31.88	3.04	-161.34	0.89
1.00	31.71	3.13	-161.47	0.21
1.05	31.75	3.24	-162.22	0.22
1.10	31.94	3.13	-163.38	0.25
1.15	32.18	2.92	-164.66	0.49
1.20	31.75	3.11	-163.99	0.48
1.25	31.35	3.26	-163.36	0.40
1.30	31.19	3.45	-163.48	0.45
1.35	31.08	3.36	-163.74	0.18
1.40	31.41	3.27	-165.20	0.27
1.45	32.57	2.98	-169.10	0.90
1.50	33.98	2.61	-173.78	1.08
1.55	35.07	2.00	-177.46	1.45
1.60	36.02	1.30	-180.71	1.53
1.65	36.70	0.33	-183.10	1.99
1.70	37.28	0.12	-185.13	0.89
1.75	37.75	0.39	-186.79	0.52
1.80	38.13	0.33	-188.16	0.12
1.85	38.48	0.13	-189.39	0.39
1.90	38.80	0.05	-190.53	0.35
1.95	39.11	0.22	-191.64	0.32
2.00	39.25	0.27	-192.23	0.09
2.05	39.31	0.26	-192.53	0.03
2.10	39.36	0.24	-192.83	0.03
2.15	39.41	0.23	-193.12	0.02
2.20	39.43	0.20	-193.29	0.06
2.25	39.42	0.15	-193.39	0.09

Table S4. Enthalpy and entropy of CO adsorption on NaNi₃(OH)(SIP)₂: 313 – 348 K

2.30	39.41	0.11	-193.49	0.09
2.35	39.40	0.06	-193.59	0.08
2.40	39.40	0.02	-193.69	0.08
2.45	39.34	0.04	-193.63	0.11
2.50	39.27	0.10	-193.54	0.11
2.55	39.21	0.18	-193.47	0.17
2.60	39.16	0.33	-193.43	0.29
2.65	39.11	0.48	-193.39	0.28
2.70	39.11	0.59	-193.51	0.21
2.75	39.14	0.67	-193.73	0.15
2.80	39.17	0.74	-193.95	0.15
2.85	39.21	0.83	-194.17	0.16
2.90	39.28	0.97	-194.51	0.27
2.95	38.97	0.91	-193.75	0.09
3.00	38.65	0.85	-192.96	0.11
3.05	38.37	0.77	-192.29	0.14
3.10	38.30	0.55	-192.25	0.43
3.15	37.94	0.47	-191.42	0.15

Amount	Enthalpy of	Error/ kJ mol ⁻¹	Entropy of	Error/ kJ mol ⁻¹
Adsorbed/	Adsorption/ kJ		Adsorption/ kJ	
$\frac{mmol g^{-1}}{o o o}$	mol⁻¹	0.52	mol ⁻¹	
0.00	35.06	0.52	102 (2	1.(2
1.70	40.10	0.49	-193.63	1.62
1.75	40.28	0.43	-194.43	2.53
1.80	40.40	0.38	-194.97	2.99
1.85	40.48	0.33	-195.40	2.14
1.90	40.55	0.29	-195.80	1.69
1.95	40.62	0.25	-196.18	1.45
2.00	40.62	0.23	-196.32	1.33
2.05	40.57	0.21	-196.29	1.33
2.10	40.52	0.19	-196.27	1.36
2.15	40.46	0.18	-196.24	1.32
2.20	40.39	0.18	-196.16	1.28
2.25	40.32	0.18	-196.06	1.27
2.30	40.25	0.18	-195.97	1.38
2.35	40.18	0.18	-195.88	1.54
2.40	40.11	0.18	-195.79	1.61
2.45	40.04	0.18	-195.68	1.70
2.50	39.97	0.18	-195.58	1.76
2.55	39.90	0.18	-195.50	1.70
2.60	39.83	0.18	-195.40	1.72
2.65	39.74	0.17	-195.24	1.77
2.70	39.56	0.20	-194.82	1.90
2.75	39.38	0.24	-194.39	2.09
2.80	39.20	0.29	-193.98	2.32
2.85	39.04	0.34	-193.60	2.66
2.90	38.91	0.40	-193.33	2.92
2.95	38.75	0.42	-192.99	3.00
3.00	38.47	0.47	-192.32	2.95
3.05	38.05	0.59	-191.22	2.93
3.10	37.68	0.62	-190.30	2.83
3.15	37.30	0.62	-189.41	2.55

Table S5. Enthalpy and entropy of CO adsorption on $NaNi_3(OH)(SIP)_2$ (degas temperature 513 K): 273 – 348 K

Amount	Enthalpy of	Error/ kJ mol ⁻¹	Entropy of	Error/ kJ mol ⁻¹
Adsorbed/	Adsorption/ kJ		Adsorption/ kJ	
mmol g ⁻¹	mol ⁻¹		mol ⁻¹	
0	27.03	0.68		
0.05	27.09	0.58	-125.83	2.06
0.1	26.55	0.25	-129.93	0.87
0.15	26.58	0.42	-133.58	1.48
0.2	26.73	0.52	-136.66	1.85
0.25	26.69	0.39	-138.54	1.37
0.3	26.86	0.31	-140.87	1.11
0.35	27.18	0.30	-143.48	1.05
0.4	27.41	0.10	-145.60	0.35
0.45	27.51	0.08	-147.14	0.30
0.5	27.48	0.35	-148.16	1.25
0.55	27.48	0.32	-149.22	1.15
0.6	27.50	0.42	-150.23	1.49
0.65	26.90	1.03	-148.96	3.75
0.7	27.02	1.09	-150.25	3.98
0.75	26.93	1.24	-150.79	4.50
0.8	26.87	1.20	-151.35	4.37
0.85	26.86	1.12	-152.11	4.09

Table S2. Enthalpy and entropy of CO adsorption on NaCo₃(OH)(SIP)₂ (degas temperature 448 K): 268 - 303 K

Figure S21. Graphs of entropy of adsorption vs. surface excess for CO adsorption on NaNi₃(OH)(SIP)₂ over the temperature range 273 – 348 K (excluding 323 K isotherm)

S7.0 Ideal adsorbed solution theory: CO/N₂ Selectivity

The adsorption of a CO/N_2 50:50 mixture on $NaNi_3(OH)(SIP)_2$ and $NaCo_3(OH)(SIP)_2$ was modelled using ideal adsorbed solution theory.¹ The model requires no equilibrium mixture data, only pure component isotherms at equal temperature. The model is based on solving the following set of equations:

- (1) $Py_1 = P^{0}_1 x_1$
- (2) $P(1-y_1) = P_2^0(1-x_1)$

(3)
$$P = 0^{0} \frac{n_{1}^{*}(P)}{P} dP = \int_{P=0}^{P=P_{2}^{0}} \frac{n_{2}^{*}(P)}{P} dP$$

$$\frac{1}{(4)} = \frac{x_1}{n_1^*(P_1^0)} + \frac{x_2}{n_2^*(P_2^0)}$$

Where P is the total pressure, P_i^0 is the pressure of component i, y_i is the mole fraction of the gas phase for component i, x_i is the adsorbed phase mole fraction of component i. Integration of pure component isotherms (n_i^*/P_i^0 vs. P_i^0) (equation 3) was performed numerically using the trapezoid method.

S7.1 Comparison of CO and N₂ adsorption isotherms for NaNi₃(OH)(SIP)₂ and NaCo₃(OH)(SIP)₂ at 348 K

Figure S22. Surface excess adsorption isotherms for CO and N₂ and IAST calculations for 1:1 mixture at 348K on a) NaNi₃(OH)(SIP)₂ and b) NaCo₃(OH)(SIP)₂ at 348 K

Figure S23. Comparison of surface excess adsorption isotherms for $1:1 \text{ CO/N}_2$ and components from IAST calculations at 348K on a) $\text{NaNi}_3(\text{OH})(\text{SIP})_2$ and b) $\text{NaCo}_3(\text{OH})(\text{SIP})_2$

S7.2 Comparison of CO/N₂ selectivity for adsorption of 1:1 mixture on NaNi₃(OH)(SIP)₂ and NaCo₃(OH)(SIP)₂ at 348 K

a)

Figure S24. Selectivity for a 1:1 CO/N₂ mixture at 348 K calculated using ideal adsorbed solution theory for adsorption on a) NaNi₃(OH)(SIP)₂ and b) NaCo₃(OH)(SIP)₂

S8.0 In-situ temperature programmed desorption studies

S8.1 NaNi₃(OH)(SIP)₂

S8.1.1 In-situ Temperature Programmed Desorption under Ultra-High Vacuum after Sequential CO Isotherms

The sequential isotherm is Figure 6 in main text.

Figure S25. In-situ temperature programmed desorption in UHV after CO sequential isotherm for NaNi₃(OH)(SIP)₂ at 348 K: Amount of CO desorbed and temperature vs. time under UHV at a heating rate of 1K min⁻¹ to a maximum temperature of 493 K.

S8.1.2 In-situ temperature programmed desorption with simultaneous thermogravimetric and dynamic mass spectrometry under helium after CO treatment at 348 K

Figure S26: a) Comparison of temperature programmed thermogravimetric, differential thermogravimetric and gas evolution profiles from dynamic sampling mass spectrometry (DSMS) for NaNi₃(OH)(SIP)₂ (activation temperature 513 K) and NaNi₃(OH)(SIP)₂ after CO treatment at 348 K under dry helium (flow rate 50 cm³ min⁻¹) for CO, H₂O and CO₂ b) Temperature programmed thermogravimetric, differential thermogravimetric and gas evolution profiles from dynamic sampling mass spectrometry (DSMS) for NaNi₃(OH)(SIP)₂ (activation temperature 513 K) under dry helium (flow rate 50 cm³ min⁻¹) for CO, H₂O and CO₂ b) Temperature programmed thermogravimetric, differential thermogravimetric and gas evolution profiles from dynamic sampling mass spectrometry (DSMS) for NaNi₃(OH)(SIP)₂ (activation temperature 513 K) under dry helium (flow rate 50 cm³ min⁻¹) for CO, H₂O and CO₂

S9 Temperature programmed thermogravimetric analysis coupled

with mass spectrometry in flowing helium (ex-situ measurements)

S9.1 Experimental

Thermogravimetric analysis (Thermal Sciences STA 1500 thermogravimetric analyzer) and mass spectrometry (VG Quadrupoles 300 amu) was used to investigate the decomposition of the MOFs. The desorbed species were monitored as a function of temperature during pyrolysis at 10 K min⁻¹ in a flow of helium (60mL min⁻¹). The sampling probe inlet, which comprised of a l mm diameter stainless steel tube lined with a deactivated fused silica capillary was located ~ 1 cm above the sample. This allows the detection of both stable decomposition products and reactive intermediate species.² Mass/charge ratios of 4(He), 18(H₂O), 28(CO), 32 (O₂), 44(CO₂) and 64(SO₂), weight loss and sample temperature were monitored simultaneously throughout the TPD experiments.

S9.2 Results and discussion

Temperature programmed desorption profiles for fresh NaNi₃(OH)(SIP)₂ for CO, CO₂, SO₂ and H₂O were determined using TG-MS and are compared in Figure S27a. The TPD profiles for H₂O for NaNi₃(OH)(SIP)₂ show peaks at 478 K and 632 K before major framework decomposition. The higher noise level for the H₂O TPD profiles compared with the other profiles is due to the higher background H₂O signal present in the mass spectrometer. The lowest temperature peaks at 478 K corresponds to desorption of water adsorbed in the pores, whereas the peak at 632 K is due to decomposition of framework. Decomposition of the framework results in the production of CO, CO₂ and SO₂, with only comparatively small amounts of H₂O. The main CO and CO₂ TPD peaks coincided and occurred at ~717 K with a weaker peak at 795 K. The TPD profiles show that the framework decomposition starts at ~ 620K. The TPD characteristics of NaCo₃(OH)(SIP)₂ are very similar to that of NaNi₃(OH)(SIP)₂. Figures S28-S32 show very similar CO, CO₂ and SO₂ TPD peaks for fresh and CO reacted NaNi₃(OH)(SIP)₂.

Mass spectrometer TPD peaks under helium at heating rate 20 K⁻¹

Table S3.Temperature Programmed Desorption peaks for Fresh $NaNi_3(OH)(SIP)_2(H_2O)_5 \cdot H_2O$

m/z	Peak 1 (K)	Peak 2 (K)	Peak 3 (K)
44 - CO ₂	717	748	795
28 - CO	717	746	796
64 - SO ₂	724	740(sh)	
18 - H ₂ O	478	632	

(s) = shoulder

Table S4. Temperature Programmed Desorption peaks for Fresh $NaCo_3(OH)(SIP)_2(H_2O)_5 \cdot H_2O$

m/z	Peak 1 (K)	Peak 2 (K)	Peak 3 (K)	Peak 4 (K)
44 - CO ₂	(s) 687	733	(s) 762	775
28 - CO	732	763		
64 - SO ₂	743			
18 - H ₂ O	425	510		

(s) = shoulder

Table S5. Temperature Programmed Desorption peaks for $NaNi_3(OH)(SIP)_2$ after exposure to CO at 348 K and 20 bar for 2 week

m/z	Peak 1 (K)	Peak 2 (K)	Peak 3 (K)
44 - CO ₂	719	749	800
28 - CO	720	749	800
64 - SO ₂	724	742(sh)	

(s) = shoulder

Table S6. Temperature Programmed Desorption peaks for NaNi₃(OH)(SIP)₂ after exposure to CO at 373 K and 100 bar for 3 days

m/z	Peak 1 (K)	Peak 2 (K)	Peak 3 (K)
44 - CO ₂	716	745	797
28 - CO	716	745	797
64 - SO ₂	724	(s) 740	

(s) = shoulder

Figure S27. Temperature programmed desorption profiles of m/z = 28(CO), $44(CO_2)$ and $64(SO_2)$ peaks in flowing helium (60 cm³ min⁻¹ for a) NaNi₃(OH)(SIP)₂(H₂O)₅·H₂O and b) NaCo₃(OH)(SIP)₂(H₂O)₅·H₂O

Figure S28. Temperature programmed desorption profiles of m/z = 28(CO), $44(CO_2)$ and $64(SO_2)$ for NaNi₃(OH)(SIP)₂ after exposure to CO at 348 K and up to 20 bar.

Figure S29 Temperature programmed desorption profiles of m/z = 28(CO), $44(CO_2)$ and $64(SO_2 \text{ for NaNi}_3(OH)(SIP)_2$ after exposure to CO at 373 K and at 100 bar in IMI-FLOW system.

Figure S30. Temperature programmed desorption profiles of m/z = 28(CO) for fresh NaNi₃(OH)(SIP)₂(H₂O)₅·H₂O, NaNi₃(OH)(SIP)₂ after CO isotherm at 348 K up to 20 bar and NaNi₃(OH)(SIP)₂ exposed to CO in IMI-FLOW at 373 K and 100 bar.

Figure S31. Temperature programmed desorption of $m/z = 44(CO_2)$ for fresh NaNi₃(OH)(SIP)-2(H₂O)₅·H₂O, NaNi₃(OH)(SIP)₂ after CO isotherm at 348 K up to 20 bar and NaNi₃(OH)(SIP)₂ exposed to CO in IMI-FLOW at 373 K and 100 bar for three days.

Figure S32. Temperature programmed desorption of $m/z = 64(SO_2)$ for fresh NaNi₃(OH)(SIP)-2(H₂O)₅·H₂O, NaNi₃(OH)(SIP)₂ after CO isotherm at 348 K up to 20 bar and NaNi₃(OH)(SIP)₂ exposed to CO in IMI-FLOW at 373 K and 100 bar for three days

S10.0 Scanning electron microscopy

Figure S33. Scanning electron micrographs of fresh NaCo₃(OH)(SIP)₂(H₂O)₅·H₂O - A and B at x47 and x350, respectively and NaCo₃(OH)(SIP)₂ after CO adsorption at 348 K up to 20 bar - C and D at x47 and x350, respectively

Figure S34. Scanning electron micrographs of fresh NaNi₃(OH)(SIP)₂(H₂O)₅·H₂O - A and B at x47 and x350, respectively and NaNi₃(OH)(SIP)₂ after CO adsorption at 348 K up to 20 bar - C and D at x47 and x350, respectively

References

1. Myers, A. L.; Prausnitz, J. M., Thermodynamics of mixed-gas adsorption. *Aiche Journal* **1965**, 11, (1), 121-127.

2. Jones, J. M.; Harding, A. W.; Brown, S. D.; Thomas, K. M., Detection of reactive intermediate nitrogen and sulphur species in the combustion of carbons that are models for coal chars. *Carbon* **1995**, 33, (6), 833-843.