Supporting information

Highly stable lithium ion capacitor enabled by hierarchical polyimide derived carbon microspheres combined with 3D current collectors

Jiangmin Jiang,[†] Ping Nie,[†]Bing Ding, Yadi Zhang, Guiyin Xu, Langyuan Wu, Hui

Dou and Xiaogang Zhang*

Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College

of Material Science and Engineering, Nanjing University of Aeronautics and

Astronautics, Nanjing 210016, China

AUTHOR INFORMATION

Corresponding Author

*E-mail: azhangxg@163.com

Figure S1. (a) The photograph and (b) SEM images of polyimide, (c) SEM image and (d) TEM image of NPCM700.

Figure S2. (a) XPS spectra and (b) The electrical resistivity of the NPCM700 and NPCM900.

Figure S3. (a) XRD pattern (b) Raman spectrum of the NPCM-A.

Figure S4. The XPS spectrum of the NPCM-A.

Figure S5. (a) The initial galvanostatic charge/discharge curves, (b) rate capability of NPCM700, NPCM800 and NPCM900 anode.

Figure S6. Schematic diagram of the pre-lithiation by an internal short method.

Figure S7.SEM images of conventional (a) Al foil and (b) Cu foil current collectors.

LICs system	Voltage range (V)	Energy density (Wh kg ⁻¹)	Power density (kW kg ⁻¹)	Cycles (Nos)	Capacity retention (%)	Reference
PCC-LIC	2~4	95.08	15	3000/5000	87.7/80.1%	This work
CCC-LIC	2~4	90.0	15	3000/5000	85.5/71.1%	This work
Fe ₃ O ₄ //GO	1~4	86.0	2.6	1000	70%	S1
$H_2 Ti_6 O_{13} / / CMK-3$	1~3.5	90.0	11	1000	80%	S2
Li ₄ Ti ₅ O ₁₂ //AC	1~2.5	50.0	15	1000	75%	S3
LiCrTiO4//AC	1~3	23.4	4	1000	85.5	S4
VN//APDC	0~4	64	10	1000	83.0	S5
TiO ₂ -B//AC	0~2.8	23	2.8	1200	73%	S6
TiNb2O7//AC	0~3.0	43	3	3000	84%	S7
TiNb ₂ O ₇ //GO	0~3	74	7.5	3000	81.2%	S8
H2Ti8O17//AC	0~3	93.8	15	3000	78.8%	S9
MoS ₂ //GO	0~4	97.0	8.3	2000	78%	S10
Li ₄ Ti ₅ O ₁₂ //PGM	1~3	40	8.3	1000	65%	S11
Nb ₂ O ₅ //PSC	0.5~3	43.9	8.75	1000	87.3%	S12

Table S1.Comparison of the electrochemical performance of PCC-LIC and CCC-LIC with other systems reported in the literature.

Table S2.The capacity retention of the CCC-LIC and PCC-LIC during different cycles.

Sample/capacity	1000	3000	5000
retention	cycles (%)	cycles (%)	cycles (%)
CCC-LIC	97.4	85.5	71.1
PCC-LIC	99.3	87.7	80.1

Supplementary references

- S1. F. Zhang, T. Zhang, X. Yang, L. Zhang, K. Leng, Y. Huang and Y. Chen, *Energy Environ*. *Sci.*, 2013, 6, 1623-1632.
- S2. Y. Wang, Z. Hong, M. Wei and Y. Xia, Adv. Funct. Mater, 2012, 22, 5185-5193.
- S3. H. Kim, K. Y. Park, M. Y. Cho, M. H. Kim, J. Hong, S. K. Jung, K. C. Roh and K. Kang, *ChemElectroChem*, 2014, 1, 125-130.
- S4. V. Aravindan, W. Chuiling and S. Madhavi, J. Mater. Chem., 2012, 22, 16026-16031.
- S5. R. Wang, J. Lang, P. Zhang, Z. Lin and X. Yan, Adv. Funct. Mater, 2015, 25, 2270-2278.
- V. Aravindan, N. Shubha, W. C. Ling and S. Madhavi, J. Mater. Chem. A, 2013, 1, 6145-6151.
- S7. V. Aravindan, J. Sundaramurthy, A. Jain, P. S. Kumar, W. C. Ling, S. Ramakrishna, M. P. Srinivasan and S. Madhavi, *ChemSusChem*, 2014, 7, 1858-1863.
- S8. H. Li, L. Shen, J. Wang, S. Fang, Y. Zhang, H. Dou and X. Zhang, *J. Mater. Chem. A*, 2015, 3, 16785-16790.
- S9. L. Que, Z. Wang, F. Yu and D. Gu, J. Mater. Chem. A, 2016, 4, 8716-8723.
- S10. F. Zhang, Y. Tang, H. Liu, H. Ji, C. Jiang, J. Zhang, X. Zhang and C.S. Lee, ACS Appl. Mater. Interfaces, 2016, 8, 4691-4699.
- S11. L. Ye, Q. Liang, Y. Lei, X. Yu, C. Han, W. Shen, Z.H. Huang, F. Kang and Q.H. Yang, J. Power Sources, 2015, 282, 174-178.
- S12. J. Wang, H. Li, L. Shen, S. Dong and X. Zhang, RSC Adv., 2016, 6, 71338-71344.