Electronic Supplementary Information

Hydrogen evolution reaction activity of nickel phosphide is highly sensitive to electrolyte pH

Zheng Zhou,^a Li Wei,^{*a} Yanqing Wang,^b H. Enis Karahan,^c Zibin Chen,^d Yaojie Lei,^a Xuncai Chen,^a Shengli Zhai,^{a,c} Xiaozhou Liao,^d Yuan Chen^{*a}

^aThe University of Sydney, School of Chemical and Biomolecular Engineering, Sydney, New South Wales, 2006, Australia E-mail: l.wei@sydney.edu.au; yuan.chen@sydney.edu.au

^bThe University of Tokyo, Faculty of Engineering, Yayoi, Bunkyo-ku, Tokyo, 113-0032 Japan

^cNanyang Technological University, School of Chemical and Biomedical Engineering, 637459, Singapore

^dThe University of Sydney, School of Aerospace, Mechanical & Mechatronic Engineering, Sydney, New South Wales, 2006, Australia

Preparation of Ni₂P electrodes

Ti foils (Sigma-Aldrich, 99.7%, 3 cm in length, 0.5 cm in width and 0.13 mm in thickness) were first cleaned by sonication in acetone and isopropanol solutions for 10 min, respectively. Next, Ni films were electrodeposited on the cleaned Ti foils in 1 M NiSO₄ electrolyte (pH adjusted to 2 using 1 M H₂SO₄) using an electrochemical workstation (CHI, 660D). The Ti foils were immerged in the electrolyte about 1 cm in depth. Carbon rods (99.999%, Strem Chemicals) as the counter electrode and a saturated calomel electrode (SCE) (in saturated KCl) were used as the counter and reference electrode, respectively. Chronoamperometry was applied at the cathodic current density of 10 mA·cm⁻² for 900 s. Subsequently, Ni oxide layers were formed by dipping the Ni films in 0.1 M KOH solution under the potential of 1.1 V (*vs.* RHE) for 900 s. Afterwards, the Ni oxide layers were phosphorized to produce Ni₂P catalysts in a tube furnace. About 1.4 g of NaH₂PO₂ (Sigma-Aldrich) was loaded in a ceramic boat and placed at the upstream in the tube furnace to generate PH₃. Ti foils with Ni oxide layers were placed at the downstream approximately 5 cm away from NaH₂PO₂. The tube furnace was first purged with Ar (50 sscm) for 30 min, and then heated at 5 °C min⁻¹ to 280 °C and held at the temperature for 1 h. After phosphorization, the furnace was cooled to room temperature under flowing Ar.

Preparation of electrolytes at different pH

Following the procedure developed in a previous study,¹ 19 electrolytes in the range from 0.52 to 13.53 were prepared. Among them, 11 electrolytes were pH-buffered from 2.71 to 10.46. First, sulphuric acid (H₂SO₄, 0.5 and 0.1 M), phosphoric acid (H₃PO₄, 0.1 M), acetate acid (CH₃COOH, 1 M and 0.3 M) and potassium hydroxide (KOH; 3.7 M, 1 M and 0.1 M) electrolytes were prepared by adding H₂SO₄ (Sigma-Aldrich, 98 wt%), H₃PO₄ (Sigma-Aldrich, 85 wt%), CH₃COOH (Sigma-Aldrich, \geq 99 wt%) and KOH pellet (Sigma-Aldrich) into deionised (DI) water, respectively. Sodium acetate solution (CH₃COONa; 0.2 M) were prepared by adding bicarbonate solution (NaHCO₃, 0.2 M) were prepared by adding CH₃COONa (Sigma-Aldrich, \geq 99 wt%), Na₂CO₃ (Sigma-Aldrich, \geq 99 wt%) and NaHCO₃ (Sigma-Aldrich, \geq 99 wt%) into DI water, respectively. Acetate buffer was prepared by

mixing different ratio of 0.3 M (or 1 M for pH < 3) CH₃COOH and 0.2 M CH₃COONa solutions; phosphoric buffer was prepared by adding different amount of 3.7 M KOH into 0.2 M H₃PO₄ solution; (bi)carbonate buffer was prepared by mixing different ratios of 0.2 M Na₂CO₃ and 0.2 M NaHCO₃ solutions.

Electrolytes	рН	Composition
H ₂ SO ₄	0.52	0.5 M H ₂ SO ₄
H_2SO_4 H_2SO_4	1.10	$0.1 \text{ M H}_2\text{SO}_4$
H ₂ OO ₄ H ₃ PO ₄	1.68	$0.1 \text{ M H}_2 \text{O}_4$
H ₃ PO ₄	2.81	$0.1 \text{ M H}_3\text{PO}_4$ diluted
acetate buffer solution	2.71	$1 \text{ M CH}_{3}\text{COOH} (48.0 \text{ mL}) + 0.2 \text{ M CH}_{3}\text{COONa} (2.0 \text{ mL})$
acetate buffer solution	3.54	0.3 M CH ₃ COOH (40.0 mL) + 0.2 M CH ₃ COONa (10.0 mL)
acetate buffer solution	4.48	0.3 M CH ₃ COOH (25.0 mL) + 0.2 M CH ₃ COONa (25.0 mL)
acetate buffer solution	5.39	0.3 M CH ₃ COOH (10.0 mL) + 0.2 M CH ₃ COONa (40.0 mL)
phosphoric buffer solution	5.40	0.2 M H ₃ PO ₄ (40.0 mL) + 3.7 M KOH (2.7 mL)
phosphoric buffer solution	6.15	0.2 M H ₃ PO ₄ (40.0 mL) + 3.7 M KOH (3.4 mL)
phosphoric buffer solution	7.21	0.2 M H ₃ PO ₄ (40.0 mL) + 3.7 M KOH (4.6 mL)
phosphoric buffer solution	8.28	0.2 M H ₃ PO ₄ (40.0 mL) + 3.7 M KOH (5.0 mL)
(bi)carbonate buffer solution	8.26	0.2 M NaHCO ₃ (49.0 mL) + 0.2 M Na ₂ CO ₃ (1.0 mL)
(bi)carbonate buffer solution	9.28	0.2 M NaHCO ₃ (35.0 mL) + 0.2 M Na ₂ CO ₃ (15.0 mL)
(bi)carbonate buffer solution	10.46	0.2 M NaHCO ₃ (5.0 mL) + 0.2 M Na ₂ CO ₃ (45.0 mL)
КОН	10.41	0.1 M KOH diluted
КОН	11.33	0.1 M KOH diluted
КОН	12.42	0.1 M KOH
КОН	13.53	1 M KOH

Table S1. Composition of electrolytes at different pH

Fig. S1. High-resolution XPS spectra of Ni_2P electrodes (a) as synthesized, and (b-d) after HER tests in different electrolytes. (b) 0.5 M H₂SO₄, (c) 0.2 M phosphoric buffer, and (d) 0.1 M KOH.

Table S2. Surface composition of Ni_2P electrodes at different conditions: as synthesized and after HER test in different electrolytes. The ratio is calculated from the XPS peak area determined in Fig. S1.

	Ratio (at. %)		
Sample	Ni^{δ^+}	Ni ²⁺	Ni(OH) ₂
As-synthesized	51.5	30.1	18.4
H_2SO_4	40.2	24.2	35.6
PBS	34.5	21.4	44.1
КОН	29.8	25.0	45.2

Fig. S2. (a) Nyquist plot and fitting results of the impedance response of the Ni₂P electrode, (b) Plot of $\log(R_{ct}^{-1})$ vs. η for the Ni₂P electrode. The insert is the Tafel plot obtained from the polarization curve. All measurements were performed in 0.5 M H₂SO₄.

Fig. S3. CV curves of Ni₂P: (a) in 0.5 M H₂SO₄, (b) in 0.2 M phosphoric buffer, (c) in 0.1 M KOH.

Table S3. EDS element ratio before/after tested in 0.1 M KOH.

	Ratio (%)			
Sample	Ni	Р	0	Ti
Before	60.0	25.1	14.1	0.8
After	76.7	13.3	8.3	1.7

Fig. S4. Polarization curves of Ni₂P and NiO/Ni(OH)₂ electrodes in 0.1 M KOH electrolytes after 100 CV cycles.

ECSA of Ni₂P catalysts

Electrochemical active surface area (ECSA) of Ni₂P catalysts was estimated from their electric double layer capacitance (C_{dl}). Cyclic voltammetry (CV) scans of Ni₂P electrodes were recorded in a non-Faradic region (-0.035–0.035 V vs. reversible hydrogen electrode (RHE)) at the different scan rates (10, 20, 30, 40 and 50 mV s⁻¹) in 0.5 M H₂SO₄. Their anodic and cathodic current densities measured at the middle potential from CV scans were linearly fitted with the CV scan rates to obtain Slope_{anodic} and Slope_{cathodic}, respectively.² C_{dl} was calculated by the equation (1):

$$C_{dl} = (\text{Slope}_{\text{anodic}} - \text{Slope}_{\text{cathodic}})/2 (1)$$

ECSA was then calculated by dividing the C_{dl} using the specific surface capacitance (C_s) of the electrode surface:

$$ECSA = C_{dl} / C_s \tag{2}$$

Since the exact value of C_s for Ni₂P is not available, A commonly used C_s value (0.035 mF cm⁻²) for metal surfaces was used in this study.³⁻⁵

 C_{d1} of Ni₂P electrodes is ~0.285 mF, corresponding to the ECSA of 8.13 cm² for the electrode with the GSA of 0.5 cm². The much larger ECSA compared to GSA can be attributed to the rough surface of Ni₂P particles as shown in SEM images (Fig. 1b).

Fig. S5. (a) CV curves of the Ni₂P electrode at a non-faradic area in 0.5 M H_2SO_4 at the scan rates of 10, 20, 30, 40 and 50 mV s⁻¹. (b) Capacitive currents plotted as a function of the scan rate.

ECSA of Pt foil

ECSA of the Pt foil was determined from its CV curve in 0.5 M H₂SO₄ electrolyte at the scan rate of 50 mV s⁻¹. Three regions of current-potential response are included in the range from 0 to 1.6 V as shown in Fig. S7. First, the electro-adsorption and desorption of H₂ is located between 0.05 and 0.4 V with two redox peaks corresponding to strong and weak binding of H₂ at Pt (100) and (110) surfaces. Second, the double layer region has a constant current from 0.4 to 0.75 V. Third, an oxidation peak appears at E > 0.85 V in the positive-going scan and a reduced peak is observed around 0.8 V in the following negative-going scan. The redox peaks are caused by the formation and reduction of hydroxide/oxide on Pt. The amounts of charge exchanged during the electro-adsorption (Q') and desorption (Q'') of H₂ on Pt can be calculated using following equation:

$$Q = \frac{1}{v} \int_{E1}^{E2} I \, dE$$

where v is the scan rate. The blue region in Fig. S7 contributed by the capacitive current from the double layer capacitance is deducted from the total charge. The coulombic charge of H₂ desorption (Q_H) on Pt foil can be calculated from the equation:

$$Q_H = \frac{1}{2}(Q' + Q'')$$

ECSA of Pt foil was then calculated by the equation:

$$\text{ECSA} = \frac{Q_H}{0.21}$$

where the constant (0.21 mC cm⁻²) represents the charge required to oxidize a monolayer of H₂ on Pt.⁶ The charges Q_H , Q', Q'' and ECSA of Pt foil were summarized in Table S3.

Fig. S6. ECSA calculation of Pt foil in 0.5 M H_2SO_4 . The CV scan rate is 50 mV s⁻¹.

Table S4. Q_H , Q', Q'' and ECSA of Pt foil (2 cm²)

Catalyst	<i>Q</i> '(mC)	<i>Q</i> ''(mC)	$Q_H (\mathrm{mC})$	$ECSA (cm^2)$
Pt foil	0.56	0.60	0.58	2.76

References cited in ESI:

- 1. W. Sheng, Z. Zhuang, M. Gao, J. Zheng, J. G. Chen and Y. Yan, *Nat. Commun.*, 2015, **6**, 5848.
- 2. Y. Yang, H. Fei, G. Ruan, C. Xiang and J. M. Tour, ACS Nano, 2014, 8, 9518-9523.
- 3. B. Seo, D. S. Baek, Y. J. Sa and S. H. Joo, *CrystEngComm*, 2016, **18**, 6083-6089.
- 4. C. C. McCrory, S. Jung, J. C. Peters and T. F. Jaramillo, *J. Am. Chem. Soc.*, 2013, **135**, 16977-16987.
- 5. C. C. McCrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters and T. F. Jaramillo, *J. Am. Chem. Soc.*, 2015, **137**, 4347-4357.
- 6. A. Pozio, M. De Francesco, A. Cemmi, F. Cardellini and L. Giorgi, J. Power Sources, 2002, 105, 13-19.