Supplementary Information

Highly Electrocatalytic Carbon Black/Copper Sulfide Composite Counter Electrodes Fabricated by a Facile Method for Quantum-Dot-Sensitized Solar Cells

I-Ping Liu,^a Hsisheng Teng^{abc} and Yuh-Lang Lee*ab

^aDepartment of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (R. O. C.)

^bResearch Center for Energy Technology and Strategy (RCETS), National Cheng Kung University, Tainan 70101, Taiwan (R. O. C.)

^cCenter for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan (R. O. C.)

*Corresponding author. *E-mail address*: yllee@mail.ncku.edu.tw (Y.-L. Lee)

EXPERIMENTAL SECTION

Materials

Carbon black powder (PRINTEX®L, furnace black, 99%) was acquired from Orion Engineered Carbons; according to the manufacturer's specifications, this powder's properties include: BET surface area of 150 m² g⁻¹, particle diameter of ~23 nm, pH value of 9.0, sieve residue less than 25 ppm (45 μ m residue), toluene extraction less than 0.1% (8 h) and DBP absorption of 120 ml per 100 g powder.

Titanium dioxide pastes of 30 NR-D and PST-400C were procured from Dyesol and JGC C&C (JGC Catalysts and Chemicals Ltd., Japan), respectively. Copper(II) nitrate trihydrate [Cu(NO₃)₂·3H₂O, 99+%] and cadmium nitrate tetrahydrate [Cd(NO₃)₂·4H₂O, 99%] were obtained from Sigma-Aldrich. Ethyl cellulose (EC, 10 cps, 48% in ethoxyl content), selenium dioxide (SeO₂, 99.9%) and sodium borohydride (NaBH₄, 99.99%) were acquired from Aldrich Chemistry. Copper(II) sulfate pentahydrate [CuSO₄·5H₂O, 100.8%], sodium acetate anhydrous (CH₃COONa, 99.9%) and ethanol (99.9%) were purchased from J. T. Baker. Zinc acetate dehydrate [Zn(CH₃COO)₂·2H₂O, 99+%] and sulfur powder (S, 99.5+%) were obtained from Riedel-de Haën. Sodium sulfide nonahydrate (Na₂S·9H₂O, 98+%), thioacetamide (C₂H₃NS, >98%), acetic acid (CH₃COOH, 99.5%), methanol (99.9%) and titanium(IV) chloride (TiCl₄, 98%) were acquired from Acros Organics, Tokyo Chemical Industry, Kanto Chemical, Merck and Fluka, respectively. All chemicals and solvents were used as received without further purification.

Preparation of Quantum-Dot-Sensitized Photoelectrodes

In this study, mesoporous titanium dioxide (TiO₂) films were utilized to accumulate semiconductor QD sensitizers. Prior to printing the TiO₂ films, a compact layer was coated on cleaned FTO substrates by the TiCl₄ pre-treatment (a reaction in a 40 mM aqueous TiCl₄ solution at 70°C for 30 min). A transparent layer was first screen-printed onto the TiCl₄-treated FTO substrate using the 30 NR-D TiO₂ paste, and a light-scattering layer was further printed directly on top of the transparent film with the PST-400C paste. After sintering at 500°C, the mesoporous TiO₂ film showed a double-layered architecture and a total thickness of ~12.5 μ m (7.5 ± 0.4 and 5.0 ± 0.2 μ m for the transparent and scattering regions, respectively).

Semiconductor QD sensitizers were synthesized by successive ionic layer adsorption and reaction (SILAR). SILAR is a conventional solution-processing method, in which the TiO₂ films are dipped in cationic and anionic precursors alternately. Upon finishing each dipping, rinsing and drying were executed. For the CdS QD, the cationic precursor was a methanol solution containing 0.03 M Cd(NO₃)₂·4H₂O and 0.05 M CH₃COONa, and the anionic precursor was a methanol/deionized water mixture (7/3 by volume) containing 0.06 M Na₂S. For the CdSe sensitizer, the cationic precursor was 0.03 M Cd(NO₃)₂·4H₂O in ethanol, and the anionic precursor was prepared by vigorously stirring a mixture of 0.03 M SeO₂ and 0.06 M NaBH₄ in ethanol until becoming clear under a nitrogen atmosphere. A complete SILAR cycle involved dipping the TiO₂ films once in both cationic and anionic precursors; in this work, CdS and CdS/CdSe photoelectrodes were prepared by 5 and 2/6 SILAR cycles, respectively, and the reaction time was fixed to 1 min for each dipping. After the QD deposition, all the photoelectrodes were dipped sequentially into a 0.1 M Zn(CH₃COO)₂·2H₂O methanol

solution for 1 min, and then into a methanol/deionized water mixture (7/3 by volume) containing 0.1 M Na₂S for 1 min. Two SILAR cycles were performed for the ZnS deposition; after that, the preparation of QD-sensitized photoelectrode was accomplished.

Characterization and Measurements

The Raman spectrum of the CB/Cu_xS composite film was accumulated using a confocal DXR Raman microscopy system (Thermo Scientific, USA) with a 532 nm laser source at 7 mW. A transmission electron microscope (TEM, H-7500, Hitachi, Japan) was employed to investigate the microstructure of the composite sample. The morphology of composite electrodes was examined using a scanning electron microscope (SEM, SU8010, Hitachi, Japan). The chemical states of elements in composite films were studied using an X-ray photoelectron spectroscopy (XPS, PHI 5000 VersaProbe, ULVAC-PHI, Inc., Japan) with Al Ka as the X-ray source (1486.7 eV for excitation energy); elemental binding energies were determined by calibration and fixing the C(1s) peak to 284.8 eV, and peak deconvolution was carried out using XPSPEAK 4.1 software with the Shirley-type baseline, as well as Gaussian-Lorentzian functions. Electrochemical impedance spectroscopy (EIS) and Tafel polarization were measured using a potentiostat (PGSTAT30, Metrohm Autolab, Netherlands) equipped with an FRA module; the EIS measurements were conducted at 0 V with 10 mV AC sinusoidal amplitudes applied over a frequency range of 100 kHz to 100 mHz, and the Tafel polarization analysis was performed at a scan rate of 10 mV sec⁻¹. A CH Instruments potentiostat (CHI627D, USA) was utilized to carry out cyclic voltammetry with a three-electrode system at a scan rate of 50 mV sec⁻¹; a platinum foil and a saturated calomel electrode (SCE) were adopted as the counter and reference electrodes, respectively, and the electrolyte was an aqueous polysulfide solution containing 1.0 M S and 1.0 M Na₂S. The photovoltaic properties (J-V curves) of the assembled solar cells were

recorded under simulated sunlight irradiation using a computer-controlled digital source meter (6240A, ADCMT, Japan) scanning from 0 V to the open-circuit voltage at a scan rate of 50 mV sec⁻¹. Calibration of the solar simulator (XES-301S, AM 1.5G, class AAA, San-Ei Electric, Japan) was implemented with a reference silicon cell (BK7, PV Measurements, USA) which was certified by the National Renewable Energy Laboratory in the USA. Incident photon-to-current efficiency spectra were analyzed using a quantum efficiency measurement system equipped with a xenon lamp (QE-R3011, DC mode, Enlitech, Taiwan).

Carbon-related composite counter electrode	$J_{\rm sc}$ (mA cm ⁻²)	V _{oc} (mV)	FF	η (%)	Reference
RGO-Cu ₂ S	18.4	520	0.46	4.40	36
RGO-Cu ₂ S	15.85	556	0.44	3.85	37
PbS/CB	13.32	509.58	0.58	3.91	38
CuInS ₂ /carbon	14.16	512	0.60	4.32	39
Cu ₂ S/carbon	13.69	593.0	0.48	3.87	40
CB/Cu _X S-3	16.96	584	0.567	5.62	present work

 Table S1. Comparison of photovoltaic performance based on CdS/CdSe sensitizers and carbon

 related composite counter electrodes.

Fig. S1 Top-view SEM image of a pristine FTO surface.

Fig. S2 Equivalent circuit utilized in the EIS measurements.

Fig. S3 Cyclic voltammograms of the CB/Cu_xS-3 thin film electrode at various specific cycles measured using a three-electrode system (a continuous measurement for 300 cycles at a scan rate of 50 mV sec⁻¹).

Fig. S4 Photovoltaic J-V curve of the CdS/CdSe QDSSC based on the CBD-CuS counter electrode measured under standard 1 sun irradiation.

Fig. S5 Photovoltaic J-V curves of the CdS/CdSe QDSSC employing a CB/Cu_XS-3 composite thin film counter electrode measured under different irradiation conditions (in sun).