Supporting Information

Pressure-induced abnormal insulating state in the triangular layered cobaltite Li_xCoO₂ (x = 0.9) Cong Xu^{1,#}, Weiji Xiao^{2,#}, Tongchao Liu^{2,#}, Fei Sun^{1, 3}, Jiaxin Zheng², Shang Peng,¹ Xuqiang Liu,¹ Feng Pan^{2,*}, and Wenge Yang^{1,4,*} Ho-kwang Mao^{1,2,4}

 ¹Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
²School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055, China
³Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

⁴High Pressure Synergetic Consortium (HPSynC), Geophysical Laboratory, Carnegie Institution of Washington, Argonne, Illinois 60439, United States

[#]These authors contributed equally to this work.

*Correspondence and requests for materials should be addressed to <u>yangwg@hpstar.ac.cn</u> (W.Y.) or <u>panfeng@pkusz.edu.cn</u> (F.P.)

1. Preparation of Delithiated Positive Electrode Materials.

Chemical delithiation of the LiCoO₂ materials was achieved by stirring the powder LiCoO₂ in acetonitrile solutions containing NO₂BF₄ oxidizer in excess. The molar ratio of LiCoO₂ and NO₂BF₄ is 5:1 for preparing Li_{0.9}CoO₂ samples. After 24 h of lithium extraction at room temperature, the LiCoO₂ powder was washed with acetonitrile several times, and the solution was removed by centrifugation. The resulting materials were then dried at 80 °C.

Table S1. ICP-AES results of $LiCoO_2$ and the chemically delithiated $LiCoO_2$. The values in the table are normalized with the cobalt content in the $LiCoO_2$ and delithiated $LiCoO_2$ samples.

samples	Li content	Co content	
LiCoO ₂	1.02	1.00	
delithiated LiCoO ₂	0.89	1.00	

2. The typical Rietveld refinement results.

The typical Rietveld refinement results of $Li_{0.9}CoO_2$ at pressure 0.3 GPa and 19.8 GPa are summarized in Table 2.

TABLE S2. Structural parameters obtained from full Rietveld refinements of the diffraction diagrams for $Li_{0.9}CoO_2$ collected at pressure 0.3 GPa and 19.8 GPa: lattice parameters; and volume of the unit cell.

	R-3m phase	R-3m phase	
Parameter	at 0.3 GPa	at 19.8 GPa	
a (Å)	2.8071(5)	2.7409(3)	
c (Å)	13.9849(1)	13.3378(7)	
z (O)	0.24039(8)	0.24039(8)	
V (Å ³)	95.4381(4)	86.7784(9)	

Note: The relative atomic positions for Co , O and Li were fixed. The Li atoms occupy 3 a Wyckoff positions at (0, 0, 0), Co atoms occupy 3 b Wyckoff positions at (0, 0, 1/2) and O atoms occupy 6 c Wyckoff positions at (0, 0, 0.24039).

3. Structure optimization

Ferromagnetically spin-polarized, anti-ferromagnetically spin-polarized, as well as non-spin-polarized DFT were used to optimize the structure, respectively, at various values of external pressure.

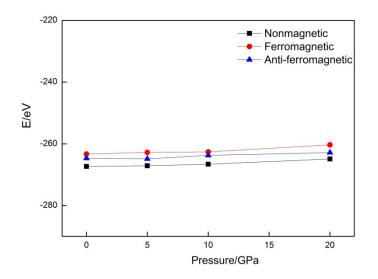


Figure S1. Energy differences between different magnetic structures at various external pressures.

4. Structure parameters of supercell of Li_{0.9}CoO₂ obtained from DFT calculations.

Table S3. Structure parameters of supercell of $Li_{0.9}CoO_2$ obtained from DFT calculations at various external pressures.

					Average
Pressure (GPa)			Average Co-	Average	distortion
	<i>a</i> (Å)	<i>c</i> (Å)	Ο	CoO_6	parameter Δ_d
	<i>a</i> (A)	$\mathcal{C}(\mathbf{A})$	bond length	octahedral	of ^{CoO} 6
			(Å)	volume (Å ³)	octahedron
					(10-4)
0	5.6556(0)	14.1272(2)	1.9257(0)	9.4224(9)	0.3731(1)

5	5.6092(9)	13.8726(4)	1.9131(3)	9.2519(2)	0.3572(2)
10	5.5689(5)	13.6558(5)	1.9028(1)	9.1116(7)	0.3353(6)
20	5.5016(7)	13.299797)	1.8846(8)	8.8639(5)	0.3204(7)
40	5.3977(6)	12.7782(2)	1.8574(9)	8.5029(3)	0.2939(0)

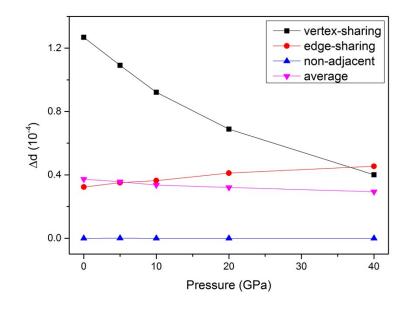


Figure S2. Distortion parameter Δ_d of all CoO₆ octahedrons in the supercell of Li_{0.9}CoO₂ versus pressure. There are 12 CoO₆ octahedra in the 2 x 2 x 1 supercell, of which 2 are vertex-sharing with the vacancy-O octahedron (i.e. the O₆ octahedron containing the Li vacancy), 6 are edge-sharing with the vacancy-O octahedron, and 4 are non-adjacent to the vacancy-O octahedron.

5.

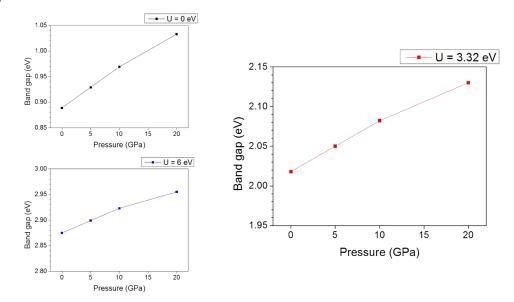


Figure S3. Calculated band gap under various external pressures with different Hubbard U.

6. High magnification scanning electron micrograghs of Li_{0.9}CoO₂ sample before and after high pressure process (up to 20 GPa).

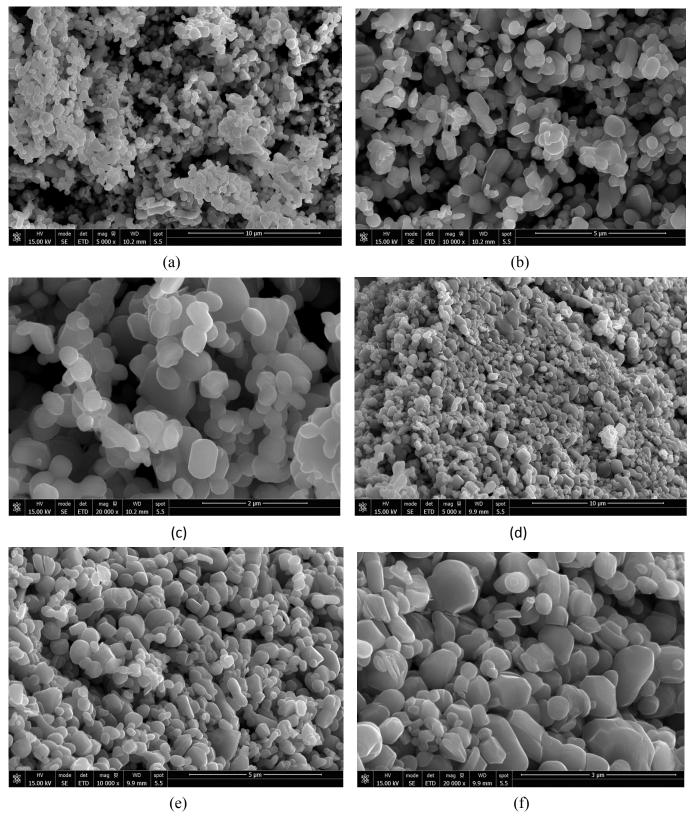


Fig. S4. High magnification scanning electron micrographs of $Li_{0.9}CoO_2$ sample before and after high

pressure process (up to 20 GPa). (a-c) photomicrographs of $Li_{0.9}CoO_2$ before high pressure process with different magnifications ×5000 (a), ×10000 (b), ×20000 (c); (d-f) micrographs of $Li_{0.9}CoO_2$ after high pressure process with different magnifications ×5000 (d), ×10000 (e), ×20000 (f).