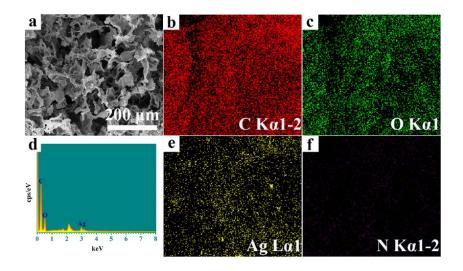
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Endowing rGO Superior Cations/Anions Co-purification and Visible Photocatalysis Performances by In-Situ Deposition of Silver Compound

Ye Xiong,^a Chao Wang,^a Hanwei Wang,^a Chunde Jin,^a Qingfeng Sun^{*a}and Xijin Xu^{*b}


a. School of Engineering, Zhejiang A & F University, Hangzhou, Zhejiang Province,

311300, PR China

b. Key Laboratory of Wood Science and Technology, Zhejiang Province, 311300, PR
 China.

*Corresponding author: Qingfeng Sun and Xijin Xu

E-mail: qfsun@zafu.edu.cn, sps_xuxj@ujn.edu.cn

Figure S1. (a) SEM image of Ag₂O/rGO, (d) EDS spectrum of Ag₂O/rGO aerogel and the corresponding elemental mapping images: (b) C; (c) O; (e) Ag; (f) N.

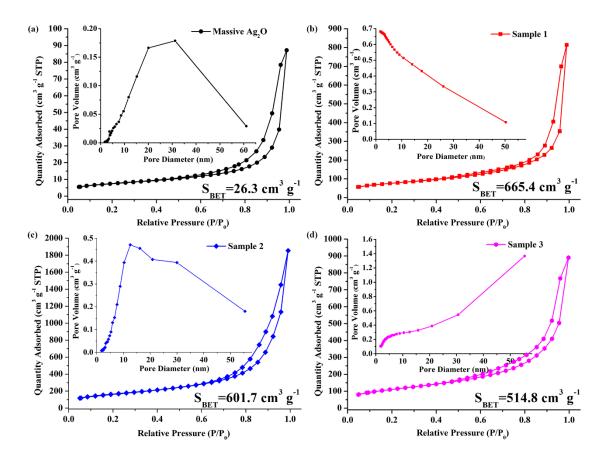


Figure S2. N2 adsorption-desorption isotherms of the massive Ag2O and sample A1-

A3, respectively.

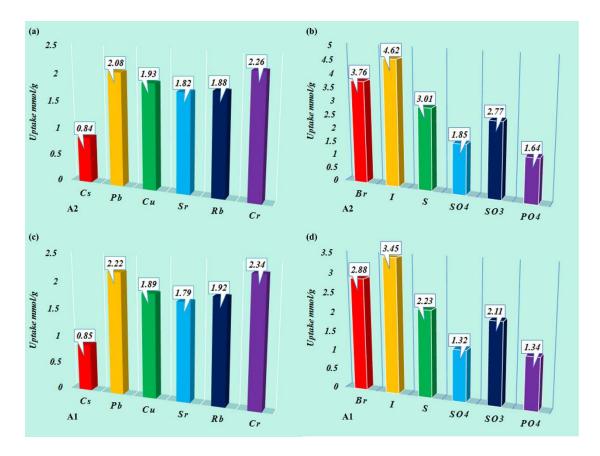
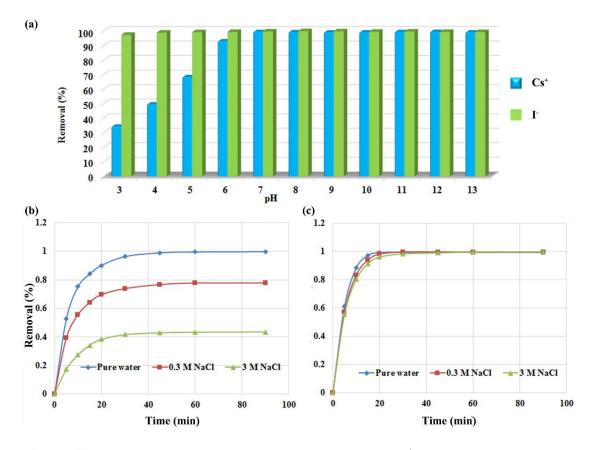



Figure S3. (a) and (c) Cationic adsorption performance of samples A2 and A1, respectively. (b) and (d) Anionic adsorption performance of samples A2 and A1, respectively.

Figure S4. (a) Co-purification performances of Cationic Cs⁺ and anionic I⁻ by sample 3 in the pH range of $3\sim11$. (b) and (c) Competitive adsorption of Cationic Cs⁺ and anionic I⁻ on Ag₂O/rGO aerogels.

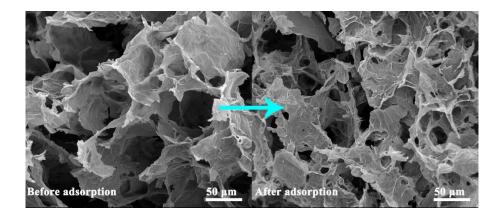
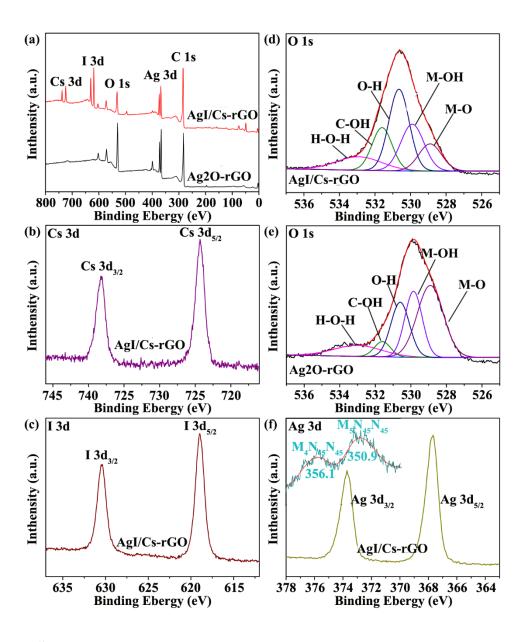
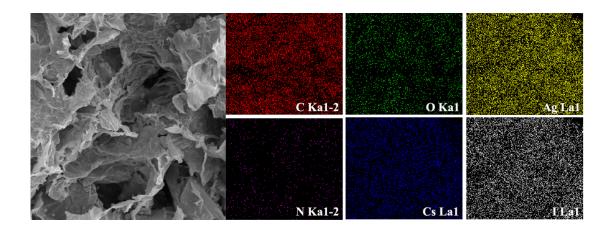




Figure S5. Morphology of the Ag_2O/rGO aerogel before and after adsorption.

Figure S6. XPS spectra of the Ag₂O/rGO hybrid aerogel before and after co-capturing Cs^+ and I^- : (a) survey spectrum; (b) Cs 3d; (c) I 3d; (d) and (e)O 1s; (f) Ag 3d, inside: Ag MNN.

Figure S7. Energy mapping images of Ag₂O/rGO aerogels after treated with CsI solution for 48 h.

Element	Weight percentage (%)	Atomic percent (%)	6 0
C∙K	11.16	46.55	
O K	5.89	18.43	•
Ag·L	34.65	16.09	a 🤗
I·L	40.76	16.09	
Cs·L	7.54	2.84	
Total	100.00	100.00	_0 2 4 6 8

Figure S8. The energy spectrum of the Ag₂O/rGO hybrid aerogel after co-capturing

 Cs^+ and I^- .

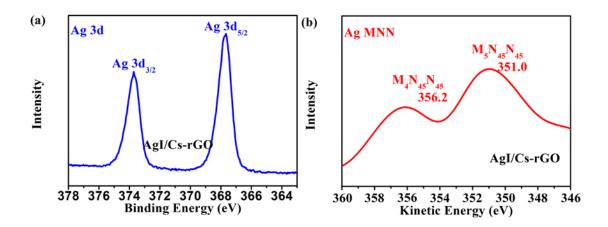


Figure S9. XPS spectra of the Ag₂O/rGO hybrid aerogel after light irradiating.

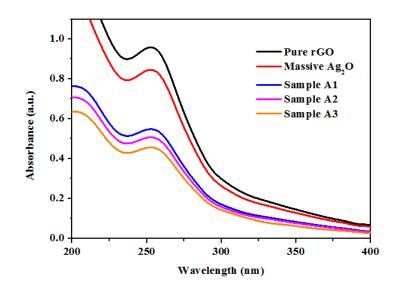


Figure S10. NBT transformation absorbance spectra over pure rGO, massive Ag₂O,

and sample A1-3 for 4 h, respectively.

Samples	S_{BET} (cm ³ g ⁻¹)	Pore volume (cm ⁻³ g ⁻¹)
Massive Ag ₂ O	26.3	0.11
Sample 3	665.4	0.39
Sample 2	601.7	0.28
Sample 1	514.8	0.64

Table S1. The specific surface areas and pore size distribution of those samples.

Samples	Atomic % (C)	Atomic % (Ag)	Atomic % (N)	Atomic % (O)	Mass ratio of Ag ₂ O to rGO
rGO	77.49	-	7.52	14.99	-
Sample 3	71.89	1.47	3.09	23.55	0.104
Sample 2	71.09	3.18	3.17	22.56	0.297
Sample 1	70.19	4.75	2.97	22.09	0.457

 Table S2. The relevant element compound of those samples.

Adsorbents	Adsorption	Removal Capacity	Reference	
Ausoroems	Element	(mmol/g)	Kelelelice	
V Marlinaita	Sr^{2+}	0.50	D.f. 25	
K-Merlinoite	Cs^+	0.75	Ref. 35	
MWCNT reinforced	Sr^{2+}	1.22	Ref. 36	
Zeolite-A beads	Cs^+	0.85		
	Cs^+	0.55	Ref. 23	
Titanate nanofibers	I-	3.04		
Titanate nanofibers	Sr^{2+}	0.63	Ref. 37	
Layered Double Hydroxides	I	3.72	Ref.38	
Anion-exchange membranes	Br⁻	0.438	Ref. 39	
Chitosan-based anionic exchanger	Br	0.72	Ref. 40	
δ -Bi ₂ O ₃ aerogels	I.	2.04	Ref. 7	
	Sr^{2+}	1.75		
$\Lambda = \Omega/m C \Omega$ as $m = 2 c^{1}$	Cs^+	0.86	This work	
Ag ₂ O/rGO aerogel	Br⁻	5.24		
	I	4.32		

Table S3. The adsorption capacities in comparison with previous work.