Supporting Information

Novel hierarchical NiS/N-doped carbon composite hollow spheres as an enhanced-performance electrode for hybrid supercapacitors

Tao Liu^a, Chuanjia Jiang^a, Bei Cheng^a, Wei You^{a,c} and Jiaguo Yu^{a,b*}

^a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,

Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, PR China

^b Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi

Arabia

^c Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA

* Corresponding author.

Tel.: 0086-27-87871029, Fax: 0086-27-87879468, E-mail: jiaguoyu@yahoo.com (JG Yu)

Calculation equations

For the three-electrode system, the specific capacitance, C_{s-CD} (F g⁻¹), of the working electrode can be obtained from the GCD curves based on the following equations:

$$C_{s-CD} = \frac{I \times \Delta t}{m \times \Delta V} \tag{1}$$

Where *I* is the charge-discharge current (A), ΔV is the width of potential window (V), Δt is the time of discharge (s), and *m* is the loading mass of active material (g).

For ASCs, charge balance is required to optimize the capacitive performance. Generally, the charge balance $(q^+=q^-)$ is decided based on the capacitive performance of each electrode. The mass balancing is valuated from Equation 3 according to the specific capacitance (C_s) and potential range (ΔV) .

$$q = m \times C_s \times \Delta V \tag{2}$$

$$\frac{m_+}{m_-} = \frac{C_{s-} \times \Delta V_-}{C_{s+} \times \Delta V_+} \tag{3}$$

Where m_+ is the anode active-material mass and m_- is the cathode active-material mass.

Total capacitance, C (F g⁻¹), energy density, E (Wh kg⁻¹), and power density, P (W kg⁻¹), of ASCs are determined by the following equations:

$$C = \frac{I \times \Delta t}{M \times V} \tag{4}$$

$$E = \frac{1}{2} \times \frac{1}{3.6} \times C \times V^2 \tag{5}$$

$$P = 3600 \times \frac{E}{\Delta t} \tag{6}$$

Where V is the operating voltage window (V), Δt is the time of discharge (s), and M is the total active material mass of these two electrodes (g).

Fig. S1. FESEM images of N-carbon/SiO₂ spheres (a and b) and NiSi/NHCS/SiO₂ (c and d).

Fig. S2. FESEM images of NiSi hollow spheres

Fig. S3. (a) N_2 adsorption/desorption isotherm and (b) Pore size distribution of NiS HS and NiS/NHCS.

Fig. S4. XPS survey scan (a), C 1s (b) and N1s (c) high-resolution XPS spectrum for N-carbon/SiO₂.

Fig. S5. XPS survey spectra for NiS/NHCS.

Fig. S6. XPS survey scan (a) and O1s (b) high-resolution XPS spectrum for NHCS.

Fig. S7. GCD and CV curves of NiS/NHCS (a and b) and NiS HS (c and d) measured at various current densities.

Fig. S8. Cycling stability tests of NiS/NHCS and NiS HS electrodes at 5 A g⁻¹.

Fig. S9 (a) CV curves and (b) GCD curves of activated carbon electrode in a three-electrode system.

Fig. S10 (a) GCD curves (b) and CV curves of the NiS/NHCS||AC| device.

Fig. S11 (a) CV curves of AC and NiS-HS from -1.0 to 0 V and 0 to 0.5 V at 10 mV s⁻¹ in a three-electrode system, respectively. (b) CV curves in various operation voltages at a scan rate of 10 mV s⁻¹, (c) GCD curves and (d) CV curves of the NiS-HS||AC device.

Fig. S12. Cycling stability of NiS/NHCS||AC device at 3 A g^{-1} .

Fig. S13. TEM images of NiS/NHCS after 5000 cycles at 3 A g⁻¹.