Supporting Information for

Gold atom-decorated CoSe₂ nanobelts with engineered active sites for enhanced oxygen evolution

Xu Zhao,^a Pengfei Gao,^a Yu Yan,^a Xingqi Li,^a Yulin Xing,^a Hongliang Li,^a Zhenmeng Peng,^{b,*} Jinlong Yang^a and Jie Zeng^{a,*}

^aHefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China

^bDepartment of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio 44325, United States

*Correspondence and requests for materials should be addressed to J.Z. (email: zengj@ustc.edu.cn) and Z. P. (email: zpeng@uakron.edu)

Figure S1. (A) TEM image of lamellar $CoSe_2$ nanobelts. (B) XRD pattern of $CoSe_2$ nanobelts. The standard patterns for pure $CoSe_2$ (JCPDS No.09-234) are attached at the bottom for comparison.

Figure S2. (A) TEM image of Au_N -CoSe₂ nanobelts. (B) The corresponding histogram of particle size distribution of Au nanoparticles.

Figure S3. (A) XPS survey spectra of Au_N -CoSe₂, Au_1 -CoSe₂, and CoSe₂ nanobelts. (B) Raman spectra of Au_N -CoSe₂, Au_1 -CoSe₂, and CoSe₂ nanobelts.

Figure S4. (A) Nyquist plots of Au_1 -CoSe₂, Au_N -CoSe₂ and CoSe₂ nanobelts obtained at 1.4 V versus reversible hydrogen electrode (RHE). (B) Comparison of the charge transfer resistance (R_{ct}) for different catalysts.

Figure S5. TEM images of (A) 0.05%Au₁-CoSe₂, (B) 0.02%Au₁-CoSe₂ nanobelts.

Figure S6. Electrocatalytic properties of Au_1 -CoSe₂ with different Au contents (0.02%, 0.05% and 0.1%) and the pure CoSe₂ nanobelts. (A) iR-corrected polarization curves recorded in O₂-saturated 0.1 M KOH solution with a scan rate of 5 mV/s. (B) Corresponding current densities at the overpotential of 0.30 V.

Figure S7. (A) TEM image of Au_1 -CoSe₂ nanobelts after the stability test. (B) XRD patterns of Au_1 -CoSe₂ nanobelts before and after the stability OER test. The standard patterns for pure CoSe₂ (JCPDS No.09-234) are shown at the bottom for comparison. (C) Au 4*f* XPS and (D) Co 2*p* XPS spectra of Au_1 -CoSe₂ nanobelts before and after the stability OER test.

Figure S8. HAADF-STEM image of Au_1 -CoSe₂ nanobelts after the stability test. Isolated Au atoms marked in white circles are uniformly dispersed on the nanobelts.

Figure S9. The models of (A) pure CoSe₂ and (B) Au₁-CoSe₂. Orange, blue and green spheres represent Au, Co, and Se atoms, respectively.

Figure S10. Typical cyclic voltammetry curves of (A) $CoSe_2$, (B) Au_1 - $CoSe_2$ and (C) Au_N - $CoSe_2$ nanobelts in 0.1 M KOH solution with different scan rates.

 Table S1. OER activities of various Co-based electrocatalysts in alkaline solution.

Material	Electrolyte	η@10 mA cm ⁻² (mV)	<i>j@</i> 300 mV (mA cm ⁻²)	Tafel slope (mV dec ⁻¹)	Reference
Au ₁ -CoSe ₂	0.1М КОН	303	8.20	42	This work
Co ₂ B-500	0.1М КОН	380	~1.59	45	\$1
CoCr ₂ O ₄ /CNS-700	0.1M KOH	365	~4	58.2	S2
Co Phyllosilicate	1М КОН	364	~1.36	60	\$3
NiCo ₂ O	0.1М КОН	362	~1.54	64.4	S4
Co ₃ S ₄ /NCNTs	0.1М КОН	430	/	70	\$5
CoMnP	1М КОН	330	~3.33	61	S6
NiCoP/C	1М КОН	330	~6.66	96	\$7
Co ₉ S ₈ /S-C-800	1М КОН	339	~4.62	64	S8
Co ₃ S ₄	0.1М КОН	355	~2	48	S9

References

- J. Masa, P. Weide, D. Peeters, I. Sinev, W. Xia, Z. Y. Sun, C. Somsen, M. Muhler, W. Schuhmann, Adv. Energy Mater. 2016, 6, 1502313.
- [2] M. Al-Mamun, X. T. Su, H. M. Zhang, H. J. Yin, P. Liu, H. G. Yang, D. Wang, Z. Y. Tang, Y. Wang, H. J. Zhao, Small. 2016, 12, 2866.
- [3] J. S. Kim, I. Park, E.-S. Jeong, K. Jin, W. M. Seong, G. Yoon, H. Kim, B. Kim, K. T. Nam, K. Kang, Adv. Mater. 2017, 29, 1606893.
- [4] C. Z. Zhu, D. Wen, S. Leubner, M. Oschatz, W. Lin, M. Holzschuh, F. Simon, S. Kaskel, A. Eychmuller, Chem. Commun. 2015, 51, 7851.
- [5] H. J. Wang, Z. P. Li, G. H. Li, F. Peng, H. Yu, *Catal Today*. 2015, **245**, 74.
- [6] D. Li, H. Baydoun, C. N. Verani, S. L. Brock, J. Am. Chem. Soc. 2016, 138, 4006.
- [7] P. L. He, X.-Y. Yu, X. W. Lou, Angew. Chem. Int. Ed. 2017, 56, 3897.
- [8] H. Y. Qian, J. Tang, Z. L. Wang, J. Kim, J. H. Kim, S. M. Alshehri, E. Yanmaz, X. Wang, Y. Yamauchi, Chem. Eur. J. 2016, 22, 18259.
- [9] Y. W. Liu, C. Xiao, M. J. Lyu, Y. Lin, W. Z. Cai, P. C. Huang, W. Tong, Y. M. Zou, Y. Xie, Angew. Chem. Int. Ed. 2015, 54, 11231.