Electronic Supplementary Information (ESI)

Atomic-Layer-Deposited Ultrathin Co_9S_8 on Carbon Nanotubes: an Efficient Bifunctional Electrocatalyst for Oxygen Evolution/Reduction Reactions and Rechargeable Zn-Air Batteries

Hao Li, Zheng Guo, and Xinwei Wang*

School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, China E-mail: wangxw@pkusz.edu.cn

Table S1. Comparison of the *d*-spacings measured by TEM (Figure 1g) with the reference data for the face-centered cubic Co_9S_8 structure (JCPDS 86-2273). The TEM results were also consistent with our previously reported data (Li et al. *Nano Lett.* 2015, **15**, 6689).

JCPDS 86-2273		TEM results
(h k l)	d (Å)	Measured <i>d</i> (Å)
(220)	3.5083	3.52
(222)	2.8645	2.84
(400)	2.4808	2.50
(420)	2.2188	2.24
(440)	1.7542	1.76

Figure S2. (a) STEM image of the ALD Co_9S_8/CNT sample, and the corresponding elemental maps of (b) Co, (c) S, (d) C, and (e) their overlay.

Figure S3. XRD patterns for the ALD Co_9S_8/CNT and ALD Co_9S_8 thin film.

Figure S4. Raman spetra for the ALD Co_9S_8/CNT , uncoated bare CNTs, and ALD Co_9S_8 thin film.

Figure S5. Comparison of the XPS spectra of (a) Co 2p and (b) S 2p peaks for the ALD Co₉S₈/CNT and ALD Co₉S₈ thin film.

Figure S6. XPS S 2p spectrum of H_2S -treated CNTs. The H_2S treatment was performed following the same deposition conditions as for the ALD of Co_9S_8 on CNTs except that no Co precursor was dosed (i.e. only dosing H_2S).

Figure S7. CV scans for the ALD-prepared (a) thin-film Co_9S_8 and (b) Co_9S_8/CNT electrocatalysts. The scans were performed in the non-Faradic region of 0.1 to 0.2 V (vs. Hg/HgO) with the scan rate varied as 10, 20, 30, 40, and 50 mV/s. (c) Plot of the current density versus scan rate for both of the catalysts, from which the double layer capacitances can be extracted from the slopes of the linear fits, respectively. The extracted double layer capacitances were 6.22 and 0.205 mF/cm² for the Co₉S₈/CNT and thin-film Co₉S₈ catalysts, respectively. The former was 30 times larger than the latter.

Figure S8. To take into account the effect of enlarged surface area for the Co_9S_8/CNT , the curve for the thin-film Co_9S_8 shown in Figure 2a is replotted herein by multiplying the current density by 30. The multiplied current density of the thin-film Co_9S_8 was still inferior to that of the Co_9S_8/CNT , suggesting that some other effects, perhaps from the CNT support, might additionally contribute to the enhanced OER performance of the Co_9S_8/CNT .

Figure S9. (a) Photograph and (b) SEM image of a piece of carbon cloth.

Figure S10. Comparison of the (a) Co 2p and (b) S 2p XPS spectra for the Co₉S₈/CNT catalyst as prepared and after OER.

Figure S11. CV curves for the Co_9S_8/CNT electrocatalyst measured in O_2 - and N_2 -saturated 0.1 mol/L KOH, respectively. The scan rate was 100 mV/s.

Figure S12. RDE voltammograms of the Pt/C catalyst with various rotation speeds for the electrode. The electrolyte was O₂-saturated 0.1 mol/L KOH, and the voltage scan rate was 10 mV/s. The inset shows the corresponding Koutecky-Levich plots (j^{-1} vs. $\omega^{-1/2}$).

Figure S13. Photographs showing that the ALD- Co_9S_8/CNT -based aqueous Zn-air batteries can be used in replacement of (a) a 1.5 V coin cell to power a temperature/humidity monitor and (b) two AAA batteries to power a remote controller, respectively.

Figure S14. Photograph of a solid-state rechargeable Zn-air battery using the ALD Co_9S_8/CNT catalyst for the air electrode. The open-circuit voltage was measured as 1.290 V.

Figure S15. Photographs of an air cathode for the aqueous Zn-air battery. The cathode had a gas diffusion layer (upper) on one side of its stainless steel mesh, and the catalyst was loaded on the other side (lower).

Catalyst	η (V)	Tafel slope	Reference	
Co ₉ S ₈ /CNT/CC	0.321	58	This work	
C0 ₉ S ₈ /CNT	0.369	58	This work	
N-Co ₉ S ₈ /graphene	0.409	82.7	Energy Environ. Sci. 2016, 9, 1320	
CoS ₂ /N,S-GO	0.381	75	ACS Catal. 2015, 5, 3625	
Co ₃ S ₄ nanosheets	0.363	90	Angew. Chem. 2015, 127, 11383	
Co ₉ S ₈ /MoS ₂ /carbon nanofiber	0.43	61	Adv. Mater. 2015, 27, 4752	
NiCo ₂ S ₄ /graphene	0.47	-	ACS Appl. Mater. Interfaces 2013, 5, 5002	
Co ₃ O ₄ /Au	0.39	60	Adv. Mater. 2014, 26, 3950	
Co/Co ₃ O ₄ /N-CNT	0.421	91.5	Angew. Chem. Int. Ed. 2016, 55, 4087	
ZnCo ₂ O ₄ /N-CNT	0.421	70.6	Adv. Mater. 2016, 28, 3777	
Co ₅₀ Zn ₅₀ /nanoporous carbon	0.44-0.48	86-92	Energy Environ. Sci. 2016, 9, 1661	
N,S-porous carbon	0.46	292	Energy Environ. Sci. 2017, 10, 742	
P-g-C ₃ N ₄ /carbon fiber paper	0.401	61.6	Angew. Chem. Int. Ed. 2015, 54, 4646	

 Table S2. Comparison of OER performance with various reported non-precious catalysts.

Catalyst	$E_{\text{onset}}(V)$ vs. RHE	$E_{1/2}(V)$ vs. RHE	п	Reference
Co ₉ S ₈ /CNT	0.94	0.82	3.84-3.90	This work
N-Co ₉ S ₈ /graphene	0.941	0.74	3.7-3.9	Energy Environ. Sci. 2016, 9, 1320
Co _{1-x} S/graphene	0.87	-	~4	Angew. Chem. Int. Ed. 2011, 50, 10969
Co ₉ S ₈ /N,S-porous-CNT	-	0.79	3.94	NPG Asia Mater. 2016, 8, e308
CoS ₂ -CNT/graphene	0.78	-	-	J. Mater. Chem. A 2016, 3, 6340
Co ₉ S ₈ /N-carbon	0.91	-	3.63-3.88	Electrochim. Acta 2016, 191, 776
CoS _x /N,S-graphene	0.82	-	3.5-3.55	RSC Adv. 2015, 5, 7280
CoP nanocrystals	0.80	0.70	3.5	Nano Lett. 2015, 15, 7616
CoO/N-CNT	0.93	-	3.9	J. Am. Chem. Soc. 2012, 134, 15849
Co/Co ₃ O ₄ /N-CNT	-	0.80	3.78	Angew. Chem. Int. Ed. 2016, 55, 4087
ZnCo ₂ O ₄ /N-CNT	0.95	0.87	3.8	Adv. Mater. 2016, 28, 3777
$\begin{array}{c} Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}/acetylene\\ black \end{array}$	0.84	-	3.43	ACS Catal. 2014, 4, 1061
Fe ₃ O ₄ /N-graphene	0.86	-	3.72-3.95	J. Am. Chem. Soc. 2012, 134, 9082
P-g-C ₃ N ₄ /carbon fiber paper	0.94	0.67	4	Angew. Chem. Int. Ed. 2015, 54, 4646

 Table S3. Comparison of ORR performance with various reported non-precious catalysts.