1	Supplementary Information
2	
3	A photocapacitor based on organometal halide perovskite and
4	PANI/CNT composites integrated using CNT bridge
5	
6	Ruhao Liu, Changhong Liu* and Shoushan Fan
7	
8	Tsinghua-Foxconn Nanotechnology Research Center and Department of Physics,
9	Tsinghua University, Beijing 100084, China
10	Changhong Liu. Email: <u>chliu@mail.tsinghua.edu.cn</u>
11	

12 1 Details of experiment

Preparation of PMMA/SACNT-PANI@acSACNT/PVA (PSP) electrode material 13 1.1 14 30 mg of SACNT was heated at 500 °C for 30 min in air to get active-SACNT 15 (acSACNT). PANI@acSACNT paper (Figure 1f) was synthesized using a previously 16 described in-situ polymerization method ¹. In brief, 30 mL of acSACNT/ethanol solution (1 17 mg mL⁻¹) was ultrasonically mixed, and was filtered to get acSACNT paper. Then, the paper was soaked in 40 mL of aniline/HCl aqueous solution (1 M HCl, 0.05 M aniline) at 0 °C for 10 18 19 min. Subsequently, 40 ml of 0.05 M (NH_4)₂S₂O₈ aqueous solution was added into the above 20 solution slowly. After that, the mixture was kept at 0 °C for 24 h. This step involves the socalled in-situ chemical reaction and generated PANI covered the surface of acSACNT in the 21 22 paper well. The PANI@acSACNT paper was cleaned with deionized water, ethanol and 23 acetone, dried at 80 °C for 24 h. 15 mL of SACNT/ethanol solution (1 mg mL⁻¹) was filtered through the above PANI@acSACNT paper, dried at 80 °C for 24 h to get SACNT-24 25 PANI@acSACNT paper. Conveniently, the side of the paper covered by SACNT layer was 26 marked as S-side, and the other side was marked as P-side. 100 μ L of PVA/H₂SO₄ aqueous solution (10 mg mL⁻¹ PVA, 0.1 M H₂SO₄) was coated onto the P-side, dried at room 27 28 temperature for 2 h. Later, the paper was soaked in PMMA/toluene solution (10 mg mL⁻¹) for 29 30 min, dried at room temperature for 5h. After that, the PMMA on the P-side was removed 30 by acetone.

31 **1.2 Device fabrication**

FTO glass was ultrasonically cleaned in detergent, deionized water, acetone and
 isopropanol (IPA) in sequence, dried with compressed nitrogen. After that, a compact titanium

34	dioxide (TiO ₂) block layer was deposited by spin-coating 90 μ L of acidic titanium
35	isopropoxide/ethanol solution (70 μL of titanium isopropoxide, 7 μL of 2 M HCl, 1 mL of
36	ethanol) onto the FTO substrate at a speed of 2000 rpm for 50 s. The substrate was dried at 150
37	°C for 30 min and then annealed at 500 °C for 30 min. A PbI ₂ film was deposited by spin-
38	coating 90 μ L of PbI ₂ / N,N-Dimethylformamide solution (500 mg mL ⁻¹) at a speed of 2000
39	rpm for 50 s, and then a MWCNT film was deposited by drop-casting 120 μL of
40	MWCNT/chlorobenzene solution (10 mg mL ⁻¹). To get the perovskite of MAPbI ₃ , 120 μ L of
41	CH ₃ NH ₃ I/IPA solution (10 mg mL ⁻¹) was dropped onto the above substrate for 3 min, dried by
42	spinning at 2000 rpm for 50 s and heated at 100 °C for 30 min. After the substrate was cooled
43	to room temperature, a PMMA film was deposited onto the substrate by spin-coating 0.5 mL
44	of PMMA/toluene solution (100 mg mL-1) at a speed of 3000 rpm for 50 s, dried at room
45	temperature. The PSC part was prepared.
46	After fabricating the PSC part, a PSP electrode was placed onto the PSC substrate with
47	the S-side of the PSP close to the PMMA film of the PSC part. Then, 100 μL of chlorobenzene
48	was dropped onto the P-side of the PSP to dissolve and reshape the PMMA film between the
49	PSC part and the PSP electrode. When the substrate was dry, with PVA electrolyte (100 mg
50	mL ⁻¹ PVA, 1 M H ₂ SO ₄), another PSP electrode was fabricated onto the substrate and formed
51	the SC part. Finally, a PMMA film was coated onto the substrate to complete the
52	photocapacitor. Moreover, a schematic showing the construction process of the photocapacitor
53	was included in Figure S1.

56 2 **PSP electrode material and the photocapacitor**

57

58

Figure S2 Photos of PSP electrode material and the photocapacitor

59 3 Schematic circuit and SEM of the common electrode inside the photocapacitor

60

61

Figure S3 Schematic circuit and cross-section SEM of the common electrode

62 4 Equivalent circuit of solar cells

63 64

Figure S4 Equivalent circuit of solar cells

65 5 Stability of the PSC part

67

Figure S5 J-V curves of PSC 1 and PSC 2, one week after fabrication

68 6 Self discharge of the photocapacitor in dark

69

70 Figure S6 Equivalent RC circuit and voltage equation during self-discharge of the photocapacitor in

71 dark

```
72 7 Equations
```

```
73\diamondEquivalent equation of solar cell. J_o is the reverse saturation current. q is the elementary74charge. n is the density of charge carriers. k is the Boltzman constant. T is the absolute75temperature. R_S and R_{sh} are equivalent serial resistance and shunt resistance inside solar76cells respectively. R_L is external load, and J and V are corresponding current and voltage77with R_L.
```

78
$$J = J_L - J_D - J_{sh} = J_L - J_O \left(e^{\frac{q(V+JR_s)}{nkT}} - 1 \right) - \frac{JR_s + V}{R_{sh}}$$
(S1)

$$\Delta V = V_T - JR \tag{S2}$$

$$dQ = Jdt \tag{S3}$$

89
$$Q = \int Jdt \tag{S4}$$

90
$$Q_A = \frac{Q}{A}$$
(S5)

91
$$dE = VJdt$$
(S6)

92
$$E = \int V J dt \tag{S7}$$

$$E_A = \frac{E}{A}$$
(S8)

94
$$C = \frac{Q}{\Delta V}$$
(S9)

95
$$C_A = \frac{C}{A}$$
(S10)

96
$$C_M = \frac{C}{M}$$
(S11)

97
$$\eta_{coul} = \frac{Q_{discha}}{Q_{cha}}$$
(S12)

power density during photo charging. In this study, P_{in} is 100 mW cm⁻² from AM 1.5G
solar light simulator. PCE is the power conversion efficiency. P_M is the largest output

101 power density (
$$V_M$$
 and J_M are the corresponding voltage and current density respectively).

102
$$FF = \frac{P_M}{V_{OC}J_{SC}} = \frac{V_M J_M}{V_{OC}J_{SC}}$$
(S13)

103
$$PCE = \frac{V_{OC}J_{SC}FF}{P_{in}} = \frac{P_M}{P_{in}}$$
(S14)

110
$$\eta_{overall} = \frac{E_{discha}}{P_{in}\Delta t}$$
(S15)

111
$$\eta_{storage} = \frac{E_{discha}}{E_{phcha}}$$
(S16)

112
$$\eta_{phcha} = \frac{\eta_{overall}}{\eta_{storage}}$$
(S17)

114
$$CH_3NH_3PbI_3(s) \Leftrightarrow CH_3NH_3I(aq) + PbI_2(s)$$
(S18)

115
$$CH_3NH_3I(aq) \Leftrightarrow CH_3NH_2(aq) + HI(aq)$$
 (S19)

116
$$4HI(aq) + O_2 \Leftrightarrow 2I_2(s) + 2H_2O$$
 (S20)

117
$$2HI(aq) \stackrel{hv}{\Leftrightarrow} H_2 \uparrow + I_2(s) \tag{S21}$$

118 8 Comparison with earlier reported photocapacitors

No. [Ref.]	Photovoltaic part	PCE (%)	Capacitor part	Coulombic efficiency η _{coul} (%)	Energy storage efficiency η _{overall} (%)	Specific Capacitance (mF cm ⁻²) / (F g ⁻¹)
1 2	DSSC		AC	80		690/
2 ³	DSSC		AC	42		650/
3 4	DSSC	4.37	PEDOT			520/
4 5	DSSC		PEDOT &CNT	59		/95
5 6	Organic SC	3.39	CNT			184/
6 7	DSSC	0.50	Plypyrrole		20	/39.3
7 8	DSSC	2.31	MWCNT		34	/83
89	DSSC		PEDOT& CNT	7.8		610/
9 10	DSSC	4.70	MWCNT			520/
10 11	DSSC	3.70	PVDF&Z nO			/2.7
11 12	DSSC	0.80	Metal oxide	88		/407
12 13	Titanium	3.17	Titanium		52	1.29/

119 Table S1 Performances of earlier reported photocapacitors and photocapacitor in this work

	oxide SC		oxide			
13 14	DSSC	4.90	AC&Nick el oxide	54		/32
14 ¹⁵	DSSC	3.38	PVDF			/2.1
15 ¹⁶	Quantum dot SC	3.45	MWCNT			/150
16 ¹⁷	DSSC	5.70	Polymer			/1.03
17 18	Crystalline silicon SC	15.50	Graphene oxide	62		0.2*10-3/
18 ¹⁹	CdS- sensitized SC	0.26	CNT			/95.25
19 ²⁰	Perovskite SC	6.37	PEDOT& carbon		74	12/
20 21	Perovskite SC	12.54	Metal oxide			43/
21 22	Perovskite SC	7.79	Carbon& MnO ₂		76	61.01/
This work	Perovskite SC	2.55	PANI&C NT	96	70.9	422/103.4

120 \star DSSC, dye-sensitized solar cell \star AC, activated carbon \star PANI, polyaniline

121 ★PEDOT, poly(3,4-ethylenedioxythiophene)

★PVDF, polyvinylidene fluoride

122 \star CNT, carbon nanotube \star MWCNT, multi-walled carbon nanotube

123 9 More details about performances of photocapacitors

Table S2 Performance data of ten photocapacitors in our study under AM 1.5G simulated sunlight of 100
 mW cm⁻².

V _{OC} (V)	J _{SC} (mA cm ⁻²)	FF	PCE (%)	Energy storage efficiency (%)
0.710	9.226	0.389	2.548	70.7
0.705	9.275	0.386	2.524	70.9
0.705	9.058	0.392	2.503	70.6
0.711	9.368	0.375	2.498	70.6
0.703	9.057	0.391	2.490	70.4
0.703	9.053	0.390	2.482	70.8
0.712	9.377	0.371	2.477	70.9
0.690	9.039	0.394	2.457	70.4
0.687	9.048	0.394	2.449	70.5
0.695	9.051	0.382	2.403	70.3

126

127 References

128	1.	C. Meng, C. Liu and S. Fan, <i>Electrochemistry communications</i> , 2009, 11, 186-189.
129	2.	T. Miyasaka and T. N. Murakami, Applied Physics Letters, 2004, 85, 3932-3934.
130	3.	T. N. Murakami, N. Kawashima and T. Miyasaka, Chemical communications, 2005, DOI:
131		10.1039/b503122b, 3346-3348.
132	4.	HW. Chen, CY. Hsu, JG. Chen, KM. Lee, CC. Wang, KC. Huang and KC. Ho,
133		Journal of Power Sources, 2010, 195, 6225-6231.
134	5.	M. Skunik, P. J. Kulesza, N. Vlachopoulos, L. Häggman and A. Hagfeldt, ECS Transactions,
135		2011, 35 , 93-102.
136	6.	G. Wee, T. Salim, Y. M. Lam, S. G. Mhaisalkar and M. Srinivasan, Energy Environ. Sci., 2011,
137		4 , 413-416.
138	7.	P. Liu, H. X. Yang, X. P. Ai, G. R. Li and X. P. Gao, Electrochemistry Communications, 2012,
139		16 , 69-72.
140	8.	Z. Yang, L. Li, Y. Luo, R. He, L. Qiu, H. Lin and H. Peng, J. Mater. Chem. A, 2013, 1, 954-958.
141	9.	P. J. Kulesza, M. Skunik-Nuckowska, K. Grzejszczyk, N. Vlachopoulos, L. Yang, L. Häggman
142		and A. Hagfeldt, ECS Transactions, 2013, 50, 235-244.
143	10.	T. Chen, Z. Yang and H. Peng, Chemphyschem : a European journal of chemical physics and
144		physical chemistry, 2013, 14, 1777-1782.

145	11.	X. Zhang, X. Huang, C. Li and H. Jiang, Advanced materials, 2013, 25, 4093-4096.
146	12.	M. Skunik-Nuckowska, K. Grzejszczyk, P. J. Kulesza, L. Yang, N. Vlachopoulos, L. Häggman,
147		E. Johansson and A. Hagfeldt, Journal of Power Sources, 2013, 234, 91-99.
148	13.	J. Xu, H. Wu, L. Lu, SF. Leung, D. Chen, X. Chen, Z. Fan, G. Shen and D. Li, Advanced
149		Functional Materials, 2014, 24, 1840-1846.
150	14.	N. Bagheri, A. Aghaei, M. Y. Ghotbi, E. Marzbanrad, N. Vlachopoulos, L. Häggman, M. Wang,
151		G. Boschloo, A. Hagfeldt, M. Skunik-Nuckowska and P. J. Kulesza, Electrochimica Acta, 2014,
152		143 , 390-397.
153	15.	X. Huang, X. Zhang and H. Jiang, J Power Sources, 2014, 248.
154	16.	R. Narayanan, P. N. Kumar, M. Deepa and A. K. Srivastava, <i>Electrochimica Acta</i> , 2015, 178,
155		113-126.
156	17.	X. Zhang and H. Jiang, Appl Phys Lett, 2015, 106, 103903.
157	18.	L. V. Thekkekara, B. Jia, Y. Zhang, L. Qiu, D. Li and M. Gu, Applied Physics Letters, 2015, 107,
158		031105.
159	19.	FW. Lee, CW. Ma, YH. Lin, PC. Huang, YL. Su and YJ. Yang, Sensors and Materials,
160		2016, 28 , 749-756.
161	20.	J. Xu, Z. Ku, Y. Zhang, D. Chao and H. J. Fan, Advanced Materials Technologies, 2016, 1,
162		1600074.
163	21.	F. Zhou, Z. Ren, Y. Zhao, X. Shen, A. Wang, Y. Y. Li, C. Surya and Y. Chai, ACS nano, 2016,
164		10 , 5900-5908.
165	22.	Z. Liu, Y. Zhong, B. Sun, X. Liu, J. Han, T. Shi, Z. Tang and G. Liao, ACS applied materials &
166		interfaces, 2017.