Supporting Information

Active Site-Engineered Bifunctional Electrocatalysts of Ternary Spinel Oxides, M_{0.1}Ni_{0.9}Co₂O₄ (M: Mn, Fe, Cu, Zn) for the Air Electrode of Rechargeable Zinc-Air Batteries

Yu-Ju Chien, Ching-Fang Liu, Chi-Chang Hu*

Department of Chemical Engineering National Tsing Hua University Hsin-Chu 30013, Taiwan

Submitted to

J. Materials Chemistry A

*Corresponding Author: Chi-Chang Hu, NTHU Chair Professor Department of Chemical Engineering National Tsing Hua University 101, Section 2, Kuang-Fu Road Hsin-Chu 30013, TAIWAN Phone & Fax: +886-3-5736027 E-mail:cchu@che.nthu.edu.tw

Fig. S1. Mixture design of ternary $(Cu_xNi_y)Co_{3-x-y}O_4$ (x+y \leq 1) for evaluating the OER overpotential; where η stands for the overpotential of the OER at a fixed current density; X₁ X₂, X₃ stand for pseudo-components.

Fig. S2. High-resolution XPS spectra O 1s of FNCO-01, MNCO-01, CNCO-01,

ZNCO-01.

Catalysts	BET surface area (m ² g ⁻¹)					
MNCO-01	35					
FNCO-01	32					
CNCO-01	18					
ZNCO-01	38					

Table S1 The specific surface area of the MNCO-01, FNCO-01, CNCO-01, and ZNCO-01

at at	om / conc.	М	Ni	Co	М	Ni	Co
$M_{x} M_{1-x} C_{2} U_{4}$ $M=Mn, Fe, Cu, Xn$		wt%			atom		
MNCO-01	x=0.1	2.007	21.83	43.87	0.09	0.97	1.94
FNCO-01	x=0.1	1.726	21.28	49.32	0.07	0.89	2.04
CNCO-01	x=0.1	2.485	16.85	48.57	0.12	0.75	2.13
ZNCO-01	x=0.1	2.472	13.51	55.76	0.12	0.57	2.31

Table S2 ICP-MS analysis of FNCO-01, MNCO-01, CNCO-01, ZNCO-01.

With the exception of ZNCO-01, ternary oxides can be considered to be $M_xNi_{1-x}Co_2O_4$ and ZNCO-01 should be $(Zn_{0.1}Ni_{0.6}Co_{0.3})Co_2O_4$.

Table S3 The electron configuration, CFSE at octahedral and tetrahedral site and OSPE for Mn, Fe, Cu, and Zn ions at different oxidation states

Ion Electron configuration	Electron		OCDE		
	configuration	Oct.	T	OSPE ^c	
Mn^{2+}	3d ⁵	0	0	0	0
Mn^{3+}	3d ⁴	$-3/5\Delta_{\rm o}$	$-2/5\Delta_t$	$-8/45\Delta_{o}$	-19/45∆ _o
Mn^{4+}	3d ³	$-6/5\Delta_{\rm o}$	$-4/5\Delta_t$	$-16/45\Delta_{o}$	$-38/45\Delta_{o}$
Mn^{6+}	3d ¹	$-2/5\Delta_{\rm o}$	$-3/5\Delta_t$	$-12/45\Delta_{o}$	$-6/45\Delta_{o}$
Mn^{7+}	$3d^0$	0	0	0	0
Fe ²⁺	3d ⁶	$-2/5\Delta_{o}$	$-2/5\Delta_t$	$-12/45\Delta_{o}$	$-6/45\Delta_{o}$
Fe ³⁺	3d ⁵	0	0	0	0
Cu^+	3d ¹⁰	0	0	0	0
Cu^{2+}	3d ⁹	$-3/5\Delta_{o}$	$-3/5\Delta_t$	$-8/45\Delta_{o}$	-19/45∆₀
Zn^{2+}	3d ¹⁰	0	0	0	0

 $a \ CFSE = \Delta E = E_{isotropic field} - E_{ligand field}$; where $E_{isotropic field}$ is the energy of isotropic field and $E_{ligand field}$ is the energy of octahedral ligand field

^b Conversion of Δ_t , $\Delta_t = 4/9\Delta_o$

 $_{c}OSPE = CFSE_{oct} - CFSE_{tet}$; where the CFSE_{oct} is the octahedral fields; CFSE_{tet} is the tetrahedral fields.

Fig. S3 Cyclic Voltammograms of the (a) MNCO-01, (b) FNCO-01, (c) CNCO-01, and (d) ZNCO-01 electrodes with 1^{st} , 50^{th} , 100^{th} , and 150^{th} cycle in 0.1 M KOH at 25 mV s⁻¹.