Electronic Supplementary Information

A difluorobenzothiadiazole-based conjugated polymer with alkylthiophene as the side chains for efficient, additive-free and thick-film polymer solar cells

Mu He, §^{a, d} Miaomiao Li, §^{b, c} Xin Dong,^{a, d} Hongkun Tian,*^a Hui Tong,*^a Jun Liu,^a

Zhiyuan Xie,^a Yanhou Geng*^{a, b, c} and Fosong Wang^a

§ M.M. Li and Y.T. Liu contributed equally to this work.

^a State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of

Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.

*E-mail: yanhou.geng@tju.edu.cn; hktian@ciac.ac.cn; chemtonghui@ciac.ac.cn

^b School of Materials Science and Engineering and Tianjin Key Laboratory of

Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, P. R. China.

^c Collaborative Innovation Center of Chemical Science and Engineering (Tianjin),

Tianjin University, Tianjin 300072, P. R. China.

^d University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.

Instruments

¹H NMR and ¹³C NMR solution spectra were recorded on a Bruker AV (400 MHz for ¹H, 100 MHz for ¹³C and 376 MHz for ¹⁹F) spectrometer with chloroform-d (CDCl₃, tetramethylsilane (TMS) as an internal standard), methylene chloride-d₂ (CD₂Cl₂, TMS as an internal standard) or 1,1,2,2-tetrachlororoethane-d₂ (C₂Cl₄D₂) as solvent. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectra were measured on a Bruker/AutoflexIII Smartbean MALDI mass spectrometer with 2-[(2E)-3-(4-t-buthylphenyl)-2-methylprop-2-enylidene]malononitrile (DCTB) as the matrix in a reflection mode. The molecular weight of polymers was determined via high-temperature gel permeation chromatography (GPC) on a PL-GPC 220 system at 150 °C, with 1,2,4-trichlorobenzene as eluent and monodisperse polystyrene as standard. UV-Vis absorption spectra were recorded on a Shimadzu UV3600 UV-vis-NIR spectrometer. The optical band gap was calculated according to the absorption onset of spectra ($E_g^{opt} = 1240/\lambda_{onset}$ eV). Cyclic voltammetry (CV) measurements were carried out on a CHI660a electrochemical workstation at a scan rate of 100 mV s⁻¹. The CV cell consisted of glassy carbon electrode (diameter of 1 cm) as working electrode, saturated calomel electrode as reference electrode and platinum wire as counter electrode. NBu₄PF₆ (0.1M) in anhydrous acetonitrile was used as electrolyte. To extract the energy levels of polymer films, the potential was calibrated against ferrocene/ferrocenium (Fc/Fc⁺). HOMO and LUMO energy levels were calculated by the equations: HOMO = $-(4.80 + E_{onset})$ eV and LUMO = $-(4.80 + E_{onset})$ eV, in which E_{onset}^{ox} and E_{onset}^{re} are oxidation and reduction onsets versus the half potential of Fc/Fc⁺, respectively. TGA was performed at a heating rate of 10 °C min⁻¹ under nitrogen flow on a PerkinElmer TGA7. DSC was carried out on a PerkinElmer DSC 7 with a heating/cooling rate of ± 10 °C min⁻¹ under nitrogen flow. Two-dimensional grazing-incidence wide angle X-ray scattering (2D-GIWAXS) was measured at Shanghai Synchrotron Radiation Facility (SSRF) on beam line BL14B1 ($\lambda = 0.0689$ nm) with a MarCCD area detector at incidence angle of 0.16°. Atomic force microscopy (AFM) measurements were carried out in tapping mode on a SPA400HV instrument with a SPI 3800 controller (Seiko Instruments). Transmission electron microscopy (TEM) images were recorded on a JEM-1011 transmission electron microscope with accelerating voltage of 100 KV and camera length of 160 cm.

Fabrication and characterization of PSC devices

PSC devices with a device configuration of ITO/ PEDOT:PSS (~40 nm)/polymer:PC₇₁BM /PFN (~5 nm)/Al (100 nm) were fabricated. Pre-patterned indium tin oxide (ITO) coated glass substrates were cleaned sequentially with detergent, deionized water, acetone and isopropanol in ultra-sonication, followed by drying at 120 °C for 30 min and ultraviolet/ozone treatment for 25 min. PEDOT:PSS layer (Baytron P Al 4083) with thickness of ~40 nm was prepared via spin-coating on the ITO-glass substrates at 5000 r.p.m. for 40 s. After baking at 120 °C for 30 min, the substrates were transferred into glovebox under N₂ atmosphere. Polymer:PC₇₁BM solutions were prepared in *o*-DCB as solvent (polymer concentration: 11 mg/mL for both **P-2T** and **P-TT**) and were stirred on a hotplate (~ 115 °C) for at least 4 h in N₂

glovebox. Before spin coating, both the solutions and the substrates were pre-heated on a hotplate (at 90 °C for **P-2T** and 110 °C for **P-TT**). Active layers were spin coated from the warm solutions on the pre-heated substrates in N₂ glovebox. After the active layers were dried under low vacuum (< 10 Pa) for 30 min, PFN layer with thickness of ~ 5 nm was spin coated from a MeOH solution (concentration: 0.25 mg/mL) on active layer at 3000 r.p.m. for 30 s. Finally, Al layer with thickness of 100 nm was deposited by thermal evaporation at the pressure of ~ 2 × 10⁻⁴ Pa in a vacuum chamber. The active area of devices is 8 mm². Keithley 2400 source meter was used to measure *J-V* curves under 100 mW cm⁻² AM 1.5G simulated solar light illumination provided by a XES-40S2-CE Class Solar Simulator (Japan, SAN-EI Electric Co., Ltd.) in a glove box. EQE curves were detected on a QE-R3011IPCE measurement system (Enli Technology Co. Ltd).

SCLC measurement

The charge carrier mobilities of blend films were measured using the SCLC method. Hole-only and electron-only devices were fabricated with configuration of ITO/PEDOT:PSS (40 nm)/active layer (300 nm)/MoO₃ (10 nm)/Al (100 nm) and ITO/PEIE (10 nm)/active layer (300 nm)/PFN (5 nm)/Al (100 nm) respectively. The devices were measured using Keithley 2400 source meter in the dark and the charge carrier mobilities were calculated by fitting the results using a space-charge limited function¹:

$$J = \frac{9}{8} \varepsilon_0 \varepsilon_r \mu \frac{V^2}{L^3} exp^{[m]}(0.89\beta \frac{\sqrt{V}}{\sqrt{L}})$$

Where J is the dark current density, ε_0 is the permittivity of free space, ε_0 is the dielectric constant and is assumed to be 3 in our analysis, μ is the charge carrier mobility, V is the voltage drop across the device and L is the thickness of the blend layer.

Fig. S1 ¹H NMR spectra of 2-(2-decyltetradecyl)thiophene (2).

Fig. S2 ¹³C NMR spectra of 2-(2-decyltetradecyl)thiophene (2).

Fig. S3 ¹H NMR spectra of tributyl(5-(2-decyltetradecyl)thiophen-2-yl)stannane (3).

Fig. S4 ¹³C NMR spectra of tributyl(5-(2-decyltetradecyl)thiophen-2-yl)stannane (3).

Fig. S5 ¹H NMR spectra of 5-(2-decyltetradecyl)-2,3'-bithiophene (4).

Fig. S6 ¹³C NMR spectra of 5-(2-decyltetradecyl)-2,3'-bithiophene (4).

Fig. S7 ¹H NMR spectra of (5-(2-decyltetradecyl)-[2,3'-bithiophen]-5'yl)trimethylstannane (**5**).

Fig. S8 ¹³C NMR spectra of (5-(2-decyltetradecyl)-[2,3'-bithiophen]-5'-yl)trimethylstannane (5).

Fig. S9 ¹H NMR spectra of 4,7-bis(5-(2-decyltetradecyl)-[2,3'-bithiophen]-5'-yl)-5,6difluorobenzo[c][1,2,5]thiadiazole (6).

Fig. S10 ¹³C NMR spectra of 4,7-bis(5-(2-decyltetradecyl)-[2,3'-bithiophen]-5'-yl)-5,6-difluorobenzo[c][1,2,5]thiadiazole (**6**).

Fig. S11 ¹⁹F NMR spectra of 4,7-bis(5-(2-decyltetradecyl)-[2,3'-bithiophen]-5'-yl)-5,6-difluorobenzo[c][1,2,5]thiadiazole (**6**).

Fig. S12 ¹H NMR spectra of 4,7-bis(2'-bromo-5-(2-decyltetradecyl)-[2,3'-bithiophen]-5'-yl)-5,6-difluorobenzo[c][1,2,5]thiadiazole (7).

Fig. S13 ¹³C NMR spectra of 4,7-bis(2'-bromo-5-(2-decyltetradecyl)-[2,3'-bithiophen]-5'-yl)-5,6-difluorobenzo[c][1,2,5]thiadiazole (7).

Fig. S14 ¹⁹F NMR spectra of 4,7-bis(2'-bromo-5-(2-decyltetradecyl)-[2,3'-bithiophen]-5'-yl)-5,6-difluorobenzo[c][1,2,5]thiadiazole (7).

Fig. S16 ¹H NMR spectra of P-TT.

Fig. S17 TGA curves of the polymers in nitrogen with a heating rate of 10 °C/min.

Fig. S18 DSC curves of the polymers: in nitrogen with a heating/cooling rate of 10 °C/min.

Fig. S19 Thin film cyclic voltammograms (CV) of the polymers.

Fig. S20 *J-V* curves of **P-2T** based PSC devices at different a) donor-acceptor ratio and b) active layer thickness.

Table S1 The detailed photovoltaic performances of the solar cells based on P-2T:PC₇₁BM with different D:A ratio (wt:wt) and active layer thickness. The solvent was *o*-DCB.

D:A ratio	Thickness (nm)	$J_{ m sc}~({ m mA/cm^2})$	$V_{ m oc}$ (V)	FF	PCE _{max} (PCE _{ave}) ^{a)} (%)
1:1	288	17.57	0.75	57.3%	7.55 (7.39)
1:1.5	271	17.34	0.76	58.9%	7.76 (7.47)
1:1.8	242	16.20	0.75	60.2%	7.31 (7.16)
1:1.2	360	16.69	0.75	56.7%	7.10 (6.94)
	320	16.78	0.76	58.0%	7.40 (7.22)
	285	17.83	0.76	58.1%	7.87 (7.61)
	255	17.48	0.76	59.5%	7.91 (7.69)
	228	17.01	0.75	61.0%	7.78 (7.54)
	180	16.26	0.76	61.4%	7.48 (7.14)
	130	13.82	0.75	66.3%	6.88 (6.75)
	100	12.18	0.77	68.8%	6.45 (6.30)

^{a)} The values in parentheses stand for the average PCEs from over 15 devices.

Fig. S21 *J-V* curves of **P-TT** based PSC devices at different a) donor-acceptor ratio and b) active layer thickness.

Table S2 The detailed photovoltaic performances of the solar cells based on P-TT:PC₇₁BM with different D:A ratio (wt:wt) and active layer thickness. The solvent was o-DCB.

D:A ratio	Thickness (nm)	$J_{\rm sc}~({ m mA/cm^2})$	$V_{\rm oc}$ (V)	FF	PCE _{max} (PCE _{ave}) ^{a)} (%)
1:1	260	17.20	0.79	69.7%	9.47 (9.11)
1:1.5	254	17.11	0.80	69.9%	9.57 (9.33)
1:1.8	264	16.77	0.79	69.6%	9.22 (8.88)
1:1.2	358	17.60	0.79	66.9%	9.30 (8.90)
	295	17.91	0.80	67.7%	9.70 (9.44)
	272	18.15	0.80	68.6%	9.96 (9.58)
	247	17.38	0.80	70.7%	9.83 (9.45)
	215	16.48	0.80	71.0%	9.36 (9.04)
	175	15.22	0.80	71.8%	8.74 (8.48)
	142	14.06	0.80	72.5%	8.15 (7.93)
	109	13.07	0.80	72.8%	7.61 (7.45)

^{a)} The values in parentheses stand for the average PCEs from over 15 devices.

Fig. S22 Dark current density versus effective voltage characteristics of hole- and electron-only devices, with photoactive layers based on blends **P-2T**:PC₇₁BM and **P-TT**:PC₇₁BM prepared from *o*-DCB.

Table S3 Mobility results of space charge limited current (SCLC) devices based on **P-2T**:PC₇₁BM and **P-TT**:PC₇₁BM prepared from *o*-DCB.

D:A	μ_h (cm ² V ⁻¹ s ⁻¹)	μ_{e} (cm ² V ⁻¹ s ⁻¹)	μ_h/μ_e
P-2T : PC ₇₁ BM	1.24×10 ⁻³	2.28×10-3	0.54
P-TT : PC71BM	4.51×10-3	3.44×10-3	1.31

Crystallographic parameters			P-2T neat	P-2T blend	P-TT neat	P-TT blend
	Lamellar packing (100)	<i>q</i> (nm ⁻¹)	2.38	2.48	N/A	2.49
Out-of-plane		d-spacing (Å)	26.40	25.34	N/A	25.23
direction	π-π stacking (010) or (020)	<i>q</i> (nm ⁻¹)	N/A	17.78	17.40	17.60
		d-spacing (Å)	N/A	3.53	3.61	3.57
	Lamellar packing (100)	<i>q</i> (nm ⁻¹)	N/A	2.22	2.04	2.15
In-plane		d-spacing (Å)	N/A	28.30	30.80	29.22
direction	π - π stacking (010) or (020)	<i>q</i> (nm ⁻¹)	17.62	N/A	N/A	N/A
		d-spacing (Å)	3.57	N/A	N/A	N/A

Table S4 2D-GIXD data of P-2T and P-TT neat and blend films.^a

^{a)} N/A denotes not available

References

 X. Long, Z. Ding, C. Dou, J. Zhang, J. Liu and L. Wang, *Adv. Mater.*, 2016, 28, 6504-6508.