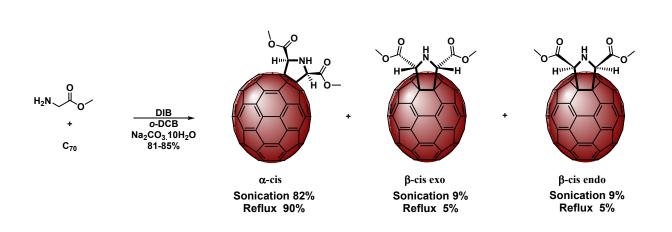
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Impact of Fullerene Derivative Isomeric Purity on the Performance of Inverted Planar Perovskite Solar Cells

Edison Castro, Gerardo Zavala, Sairaman Seetharaman, Francis D'Souza, and Luis Echegoyen*

E. Castro, E. G. Zavala, Prof. L. Echegoyen Department of Chemistry University of Texas at El Paso El Paso, Texas, 79968, United States E-mail: <u>echegoyen@utep.edu</u>


S. Seetharaman, Prof. F. D'Souza Department of Chemistry University of North Texas Denton, TX 76203-5017, United States.

General Methodology

All chemicals were reagent grade, purchased from Sigma Aldrich. Silica gel (Redisep silica, 40-60 μ , 60 Å) was used to separate the products from the pristine fullerene. HPLC experiments were performed on an LC-9130NEXT apparatus (Japan Analytical Industry Co. Ltd.) monitored using a UV detector at 320 nm, and toluene as eluent. MALDI-TOF mass spectrometric measurements were conducted on a Bruker Microflex LRF mass spectrometer on reflector positive mode. The NMR spectra were recorded using a JEOL 600 MHz spectrometer. The UV/Vis-NIR spectra were taken using a Cary 5000 UV/Vis-NIR spectrophotometer using chloroform solutions. Cyclic voltammetry (CV) experiments were carried out under an Argon atmosphere at room temperature using a CH Instrument Potentiostat. Scan rate for CV experiments was 100 mV/s. A one compartment cell with a

standard three-electrode set up was used, consisting of a 1 mm diameter glassy carbon disk as the working electrode, a platinum wire as the counter electrode and a silver wire as the pseudo-reference electrode, in a solution of anhydrous *o*-DCB containing 0.05 M n-Bu₄NPF₆. Ferrocene was added to the solution at the end of each experiment as an internal standard.

Experimental Section

Scheme S1. Synthesis of DMEC₇₀ fullerene derivatives. The structures of the chiral α -type isomer (left) and the two possible achiral β -type isomers (right). The percentage was calculated from 3 independent reactions.

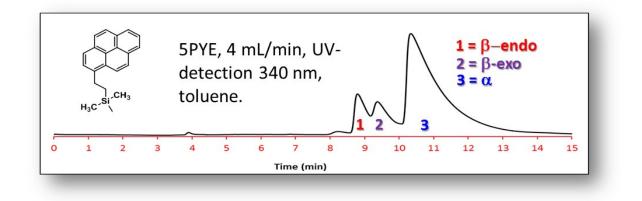
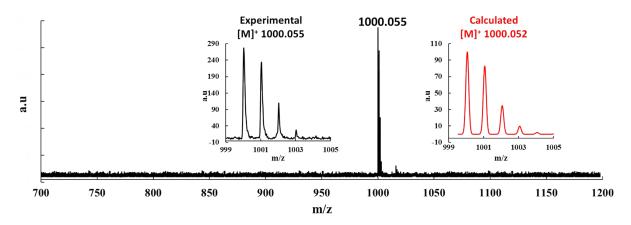
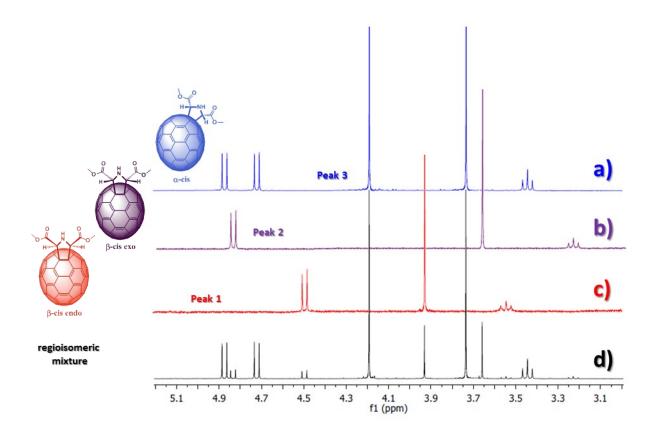




Figure S1. HPLC chromatogram of the C₇₀ mono-adducts regioisomeric mixture.

Figure S2. MALDI-TOF spectrum of DMEC₇₀ using 1,8,9-trihydroxyanthracene (THA) as matrix C₇₀.

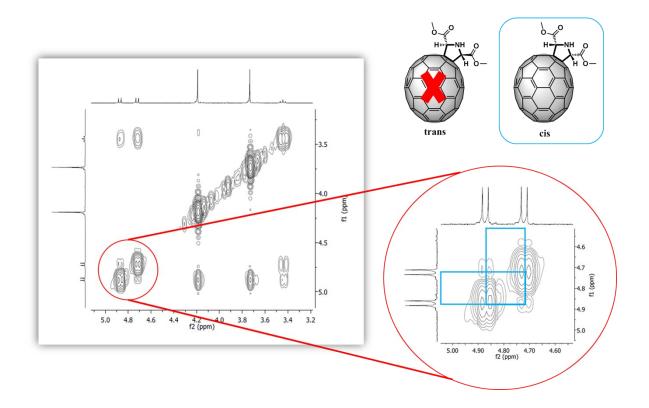
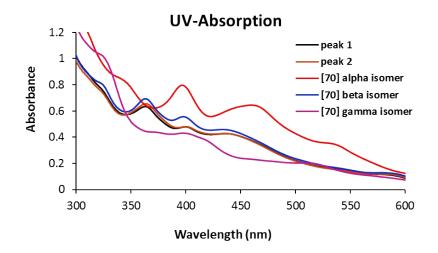


Figure S3. ¹H-NMR of the DMEC₇₀ fullerene derivatives, before and after HPLC purification (CDCl₃, 298 K, 600 MHz). a) α -cis b) β -cis exo c) β -cis endo d) regioisomeric mixture.


α-DMEC₇₀ ¹H NMR (600 MHz; CDCl₃, 298 K) δ (ppm) 4.89 (*d*, J = 13.7 Hz, 1 H, α-CH), 4.73 (*d*, J = 13.8 Hz, 1 H, α-CH), 4.20 (*s*, 3 H, α-CH₃), 3.75 (*s*, 3 H, α-CH₃), 3.46 (*t*, J = 13.8 Hz, 1 H, α-NH).

β-exo-DMEC₇₀ ¹H NMR (600 MHz; CDCl₃, 298 K) δ (ppm) 4.84 (*d*, J = 13.7 Hz, 2 H, β-CH), 3.67 (*s*, 6 H, β-CH₃), 3.24 (*t*, J = 13.7 Hz, 1 H, β-NH).

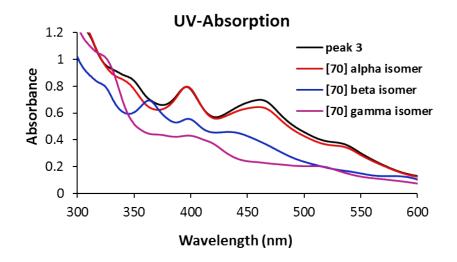

β-endo-DMEC₇₀ ¹H NMR (600 MHz; CDCl₃, 298 K) δ (ppm) 4.51 (*d*, J = 13.7 Hz, 2 H, β-CH), 3.94 (*s*, 6 H, β-CH₃), (*t*, J = 13.7 Hz, 1 H, β-NH).

Figure S4. NOESY of the α -DMEC₇₀ isomer.

Figure S5. UV-Vis spectra of β -endo-DMEC₇₀ (peak 1), β -exo-DMEC₇₀ (peak 2), α -pyrrolidine-C₇₀, β -pyrrolidine-C₇₀ and γ -pyrrolidine-C₇₀ in chloroform.

Figure S6. UV-Vis spectra of α -exo-DMEC₇₀ (peak 3), α -pyrrolidine-C₇₀, β -pyrrolidine-C₇₀ and γ -pyrrolidine-C₇₀ in chloroform.

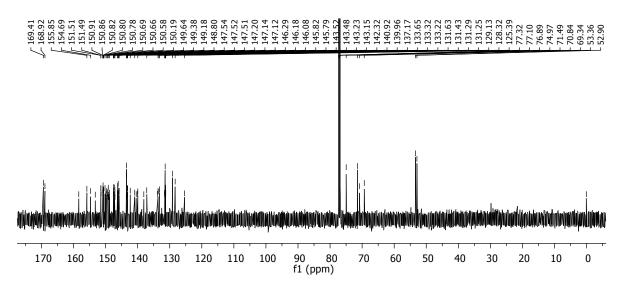
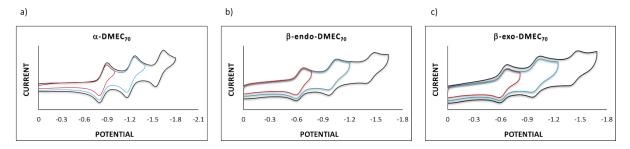
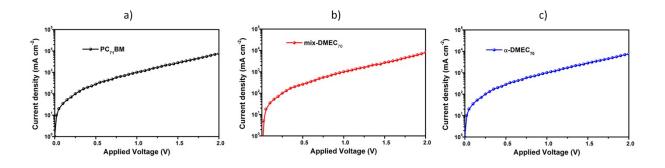



Figure S7. ¹³C NMR (150 MHz; CDCl₃, 298 K) of α-DMEC₇₀.


¹³C NMR (150 MHz; CDCl₃, 298 K) δ (ppm) 169.4, 168.9, 158.4, 155.9, 154.7, 153.2, 151.5, 151.5, 150.9, 150.9, 150.8, 150.8, 150.8, 150.7, 150.7, 150.6, 150.2, 150.1, 149.9,

149.9, 149.6, 149.4, 149.3, 149.2, 149.1, 149.1, 149.1, 148.8, 148.8, 147.5, 147.5, 147.5, 147.2, 147.1, 147.1, 147.1, 147.0, 146.3, 146.2, 146.1, 146.0, 145.8, 145.8, 145.8, 143.5, 143.4, 143.3, 143.2, 143.2, 142.3, 140.9, 140.5, 140.1, 140.0, 138.1, 137.2, 133.9, 133.7, 133.3, 133.2, 131.6, 131.6, 131.4, 131.3, 131.3, 129.1, 128.3, 125.4, 75.0, 71.5, 70.8, 69.3, 53.4, 52.9.

Figure S8. Cyclic voltammetry of a) α -DMEC₇₀ b) β -endo-DMEC₇₀ and c) β -exo-DMEC₇₀ (*o*-DCB containing 0.05 M *n*-Bu₄NPF₆; using the redox couple Fc/Fc⁺ as internal reference).

Device characterization: *J-V* characteristics of photovoltaic cells were tested using a Keithley 2420 source meter under a Photo Emission Tech SS100 Solar Simulator, and the light intensity was calibrated by a standard Si solar cell. EQEs were measured using a Bentham (from Bentham Instruments Ltd) measurement system. The light intensity was calibrated using a single-crystal Si photovoltaic cell as the reference. The *J-V* and EQE measurements were carried out in air. The SEM images were collected using a ZEISS Sigma FE-SEM, where the electron beam was accelerated in the range of 500 V to 30 kV. Film thicknesses were measured using a Ramé-Hart model 250 goniometer using pure deionized water at room temperature at a constant volume of 5 μ L. A total of ten static measurements were analyzed and averaged for each ETL. The stead-state photoluminescence spectra were recorded on a Horiba Yvon Nanolog spectrometer coupled with a time-correlated single photon counting (TCSPC) with nanoLED excitation sources for time-resolved emission measurements.

Figure S9. Measured space-charge limited *J-V* characteristics of a) $PC_{71}BM$, b) mix-DMEC₇₀ and c) α -DMEC₇₀ for electron only devices with ITO/Al/fullerene/Al structure.

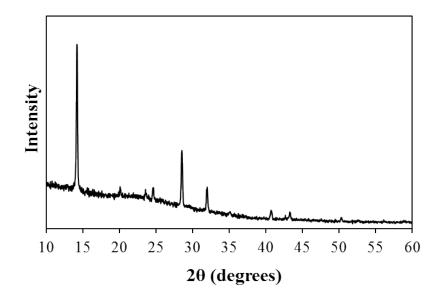


Figure S10. The XRD spectra of the perovskite films.

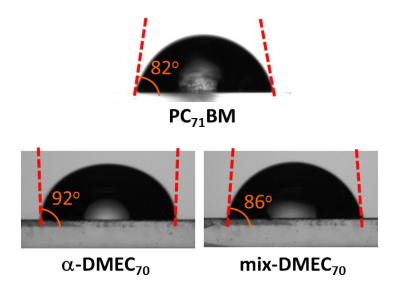


Figure S11. Images of the water droplet contact angles on the surfaces of $PC_{71}BM$, α -DMEC₇₀ and mix-DMEC₇₀ thin films.

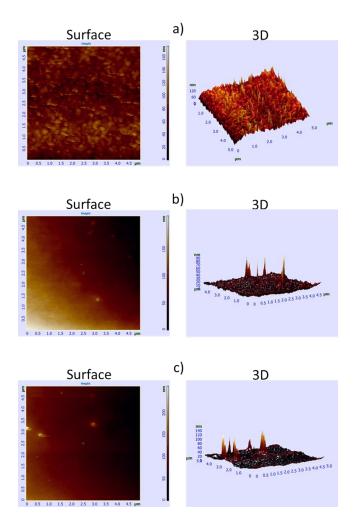


Figure S12. AFM Images of a) perovskite layer, b) mix-DMEC₇₀ deposited on top of the perovskite layer and d) α -DMEC₇₀ deposited on top of the perovskite layer.