Supporting Information

Kinetically Controlled Synthesis of Au-Pt Bi-metallic Aerogels and Their

Enhanced Electroatalytic Performances

Qiurong Shi, Chengzhou Zhu,* Cuixia Bi, Haibing Xia, Shuo Feng, Mark H. Engelhard, Dan Du, Yuehe Lin*

Q. R. Shi, Dr. C. Z. Zhu, S. Feng, Dr. D. Du, Prof. Y. H. Lin
School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, United States
E-mail: chengzhou.zhu@wsu.edu, yuehe.lin@wsu.edu
C. X. Bi, Prof. H. B. Xia
Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China
M. H. Engelhard
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States

EXPERIMENT

Chemical and Materials. Sodium borohydride (NaBH₄), Chloroplatinic acid (H₂PtCl₆), were all purchased from Sigma-Aldrich Co. Ltd. Hydrogen tetrachloroaurate(III) hydrate was purchased from STREM Co. Ltd. The water in all experiments was prepared in a three-stage Millipore Milli-Q plus 185 purification system and had a resistivity higher than 18.2 MΩ cm.

Synthesis of AuPt_x and Pt metallic hydrogels. In a typical synthesis of AuPt₅ metallic hydrogels, 0.1 mmol NaBH₄ aqueous solution was rapidly injected to a vial that containing of 33 mL H₂O, 16.7 μmol H₂PtCl₆ and 3.3 μmol HAuCl₄ under stirring at 60 °C for 1 mins. Followed by keeping the vials at 60 °C for 4 hrs without stirring. After washed with water for three times, AuPt₅ metallic aerogels could be obtained from supercritical fluid CO₂ drying technique. AuPt_x (x=1,3,7) and Pt metallic hydrogels were all obtained via the same method only except changing the feeding ratio of Au and Pt precursors. AuPt₅-DA metallic hydrogels were also obtained with the same method except addition of 2.5 mg DA after rapid injection of NaBH₄ aqueous solution and kept the mixture still.

Preparation and electrochemical measurements of electrode. The homogeneous Pt/C catalyst ink (1 mg_{Pt}/mL) was prepared via dispersing commercial Pt/C powders into deionized water via ultrasonic agitation.

The electrochemical measurements were conducted on a standard three-electrode electrochemical workstation (CHI 630E) at room temperature. A Pt wire was used as the counter electrode and a Hg/HgCl₂ electrode filled with saturated potassium chloride aqueous solution was reference electrode. The working electrode was prepared by loading 5 μ L AuPt_x metallic hydrogels (1 mg_{Pt}/mL) on a glass carbon electrode (GCE) and dried at 60 °C, followed by dropping

5 μ L Nafion (0.05%) and dried at 60 °C.

CV measurements with scan rate of 50 mV/s were performed after purging nitrogen into 1 M H_2SO_4 solution without and within 1 M methanol for 30 min. CA measurements were performed in 1 M H_2SO_4 solution within 1 M methanol at 0.55 V.

Characterization. Transmission electron microscopy (TEM) images were obtained by Philips CM200 UT (Field Emission Instruments (FEI), USA). FEI sirion field emission scanning electron microscope (FESEM) was used for imaging and energy-dispersive X-ray analysis (EDX). The tube was operated at 40 KV accelerating voltage and 15 mA current. X-ray Diffraction (XRD) characterization was carried out by Rigaku Miniflex 600. X-ray photoelectron spectroscopy (XPS) measurements were performed with a Physical Electronics Quantera Scanning X-ray Microprobe. Supercritical CO₂ drying was conducted using Samdri-PVT-3D instrument (Tousimis research corporation, USA).

Supporting Figures

Figure S1. XPS of the Pt 4f and Au 4f of $AuPt_x$ and Pt metallic aerogels (A) and $AuPt_5$ metallic aerogels (B) synthesized without any capping agents at 60 °C.

Figure S2. TEM images and digital pictures of the as-synthesized Au nanoparticles (A) and Au hydrogels (B).

Figure S3. TEM images of AuPt₅-25-DA metallic hydrogels obtained 0.5 min (A), 1 min (B), 5 min (C) and 10 min (D) after addition of $NaBH_4$ and DA.

Figure S4. TEM image and size distribution (inset) of AuPt₅ metallic aerogels after CA test.

Figure S5. CV curves (A) and CA curves (B) of GCE modified by $AuPt_5$ and $AuPt_5$ -25-DA metallic aerogels measured in 1.0 M H_2SO_4 solution in the presence of 1.0 M methanol. The scan rate of CV curves are 50 mV/s. CA curves are recorded at 0.55 V.

Figure S6. TEM and digital pictures of as-obtained Pt₃Co (A) and Pt₃Pb (B) metallic hydrogels.

	Materials	ECSA	Mass	On-set	Ref.
			Activity	Potential	
	Core-shell Au-Pt	35.2 m ² /g	0.45 A/mg	0.4 V vs.	1
	nanodendrites			Ag.AgCl	
	Pd@Pt nanocrystals	N/A	0.330	0.25 V vs.	2
			A/mg	Ag.AgCl	
No carbon	Porous PdNi@Pt	32.5 m ² /g	0.965	0.2 V vs. SCE	3
supported Pt-	nanostructures		A/mg		
based	Pt-on-Pd	48 m ² /g	0.490	0.3 V vs.	4
electrocatalysts	nanodendrites		A/mg	Ag/AgCl	
	Mesoporous Pt	40.5 m ² /g	0.398	0.55 V vs.	5
	nanowires		A/mg	NHE	
	Dendritic Au@Pt	N/A	0.204	0.20 V vs. SCE	6
	nanoparticles		A/mg		
	AuPt aerogel	53.9 m ² /g	0.510	0.2 V vs. SCE	This
			A/mg		work
	3D graphene supported	87.4 m ² /g	0.882	0.5 V vs. SCE	7
	PtNi		A/mg		
	PMo/PtRu/MWCNT	103.8	0.263	0.17 V vs.	8
Carbon		m²/g	A/mg	Ag/AgCl	
Supported	PtRu NPs/SNE-CNTs	86.9 m ² /g	0.372	0.21 V vs. SCE	9
electrocatalysts			A/mg		
	Graphene supported	100.8	0.365	0.15 V vs. SCE	10
	AuPt Nanodendrites	m²/g	A/mg		
	Commercial Pt/C (20%	$40.1 \text{ m}^2/\text{g}$	0.220	0.25 V vs. SCE	This
	loading)		A/mg		work

 Table S1. Detailed comparison of self-supported AuPt aerogel with state-of-the-art Pt-based
 electrocatalysts toward methanol oxidation in acid solutions.

References:

- Y. J. Li, W. C. Ding, M. R. Li, H. B. Xia, D. Y. Wang and X. T. Tao, J. Mater. Chem. A, 2015, 3, 368-376.
- 2. Y. Kim, Y. W. Lee, M. Kim and S. W. Han, Chem.-Eur. J., 2014, 20, 7901-7905.
- 3. X. Y. Liu, G. R. Xu, Y. Chen, T. H. Lu, Y. W. Tang, W. Xing, Sci. Rep., 2015, 5, 7619.
- 4. L. Wang, Y. Nemoto and Y. Yamauchi, J. Am. Chem. Soc., 2011, 133, 9674–9677.
- 5. C. W. Zhang, L. B. Xu, Y. S. Yan, J. F. Chen, Sci. Rep., 2016, 6, 31440.
- 6. S. Y. Wang, N. Kristian, S. P. Jiang, X. Wang, Nanotechnology 2009, 20, 025605.
- R. P. Xiu, F. F. Zhang, Z. H. Wang, M. Yang, J. F. Xia, R. J. Gui, Y. Z. Xia, *RSC Adv.*, 2015, 5, 86578-86583.
- 8. X. Jin, B. He, J. Miao, J. yuan, Q. Zhang and L. Niu, Carbon, 2012, 50, 3083–3091.
- 9. B. Wu, Y. Kuang, Y. Zhang, X. Zhang and J. Chen, J. Mater. Chem., 2012, 22, 13085–13090.
- W. Y. Yuan, X. L. Fan, Z. M. Cui, T. Chen, Z. L. Dong, C. M. Li, J. Mater. Chem. A, 2016, 3, 7352-7364.