One-step synthesis of multilayered 2D Sn nanodendrites as a high-performance anode material for Na-ion batteries

Tae-Hee Kim, Kyung-Sik Hong, DongRak Sohn, MinJoong Kim, Do-Hwan Nam,*ª EunAe

Cho,^{*a,b} and HyukSang Kwon^{*a}

^aDepartment of Materials Science and Engineering, Korea Advanced Institute of Science and Technology,

291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea *Email: hskwon@kaist.ac.kr

^bAdvanced Battery Center (ABC), Korea Advanced Institute of Science and Technology,

291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea

Figure S1. Electrodes surface with time during the electrodeposition processes at -2 A cm⁻² for 2 s from aqueous solutions containing 0.1 M SnSO₄ and 0.7 M H_2SO_4 (a) with and (b) without 0.2 g L⁻¹ coumarin.

Figure S2. SEM images of the Sn dendrites synthesized by cathodic electrodeposition at -2 A cm^{-2} for 2 s from an aqueous solution containing 0.1 M SnSO₄ and 0.7 M H₂SO₄; magnification of (a) 5000x and (b) 40000x.

Figure S3. Pictures of electrode surface with time during electrodeposition process at -2 A cm^{-2} for 2 s from aqueous solutions containing 0.1 M SnSO₄ and 0.7 M H₂SO₄, and 120 g L⁻¹ aceton.

Figure S4. (a) Preparation process of the stacked multilayered 2D Sn nanodendrites electrodes.(b) XRD patterns for the stacked multilayered 2D Sn nanodendrites.

Table S1. Synthesis conditions for the dense Sn layer

Dense Sn Layer Electrodeposition				
Electrolyte	40 g L ⁻¹ SnSO ₄ + 150 g L ⁻¹ H ₂ SO ₄ + 60 g L ⁻¹ Triton X-100			
Electrolyte Temp.	20 °C	Agitation	180 rpm	
Cathode Electrode	Smooth Cu foil	Anode Electrode	Sn plate	
Current density	-10 mA cm ⁻²	Deposition time	1 min	

Figure S5. Cross-sectional SEM images of the dense Sn layer synthesized by cathodic electrodeposition at -10 mA cm⁻² for 1 min from an aqueous solution containing 40 g L⁻¹ SnSO₄, 150 g L⁻¹ H₂SO₄, and 60 g L⁻¹ Triton-X 100.

Figure S6. Cycle performance of the dense Sn layer.

Figure S7. (a) Charge/discharge voltage profiles and (b) cycle performance of the multilayered 2D Sn nanodendrites synthesized by cathodic electrodeposition at -2 A cm⁻² for 2, 4, and 10 s from an aqueous solution containing 0.1 M SnSO₄, 0.7 M H₂SO₄, and 0.2 g L⁻¹ coumarin.

Table S2. Electrochemical performances of multilayered 2D Sn nanodendrites and previously

 reported Sn-based nanomaterials.

Sample	Current density (mA g ⁻¹)	Capacity after cycles (mAh g ⁻¹)	Cycle no. (capacity retention (%))
Ultrasmall Sn in carbon ¹	1000	415	500 (96)
Porous carbon/tin composite ²	20	200	15 (67)
Sn-coated viral nanoforests ³	50	405	150 (55)
Sn@wood fiber ⁴	84	145	400 (63)
Yolk-shell Sn@C Eggette-like nanostructure ⁵	100	400	50 (73)
Sn nanoparticles@porous carbon nanocages6	40	583	200 (70)
Hollow Sn ⁷	20	220	50 (34)
Porous Sn ⁸	424	519	500 (77)
Sn nanoparticles@ordered mesoporous carbon9	100	337	200 (82)
Ultrasmall Sn@N-doped carbon microcages ¹⁰	50	332	300 (76)
This work	100	757	300 (97)

Figure S8. (a) SEM images of the dense Sn layer (a) as deposited, after(b) after 1 cycle, (c) after 10 cycles, and (d) after 30 cycles.

Figure S9. Morphology change of the multilayered 2D Sn nanodendrites after performing ratecapability test varying from 0.1 to 5 C and back to 0.1 C in a voltage range from 0.001 and 0.65 V at different magnifications.

References

- 1. Y. Liu, N. Zhang, L. Jiao, Z. Tao and J. Chen, Advanced Functional Materials, 2015, 25, 214-220.
- 2. Y. Xu, Y. Zhu, Y. Liu and C. Wang, *Advanced Energy Materials*, 2013, **3**, 128-133.
- 3. Y. Liu, Y. Xu, Y. Zhu, J. N. Culver, C. A. Lundgren, K. Xu and C. Wang, ACS Nano, 2013, 7, 3627-3634.
- 4. H. Zhu, Z. Jia, Y. Chen, N. Weadock, J. Wan, O. Vaaland, X. Han, T. Li and L. Hu, *Nano Letters*, 2013, **13**, 3093-3100.
- 5. S. Li, Z. Wang, J. Liu, L. Yang, Y. Guo, L. Cheng, M. Lei and W. Wang, ACS Applied Materials & Interfaces, 2016, 8, 19438-19445.
- 6. S. Chen, Z. Ao, B. Sun, X. Xie and G. Wang, *Energy Storage Materials*, 2016, 5, 180-190.
- 7. Y. Cheng, J. Huang, R. Li, Z. Xu, L. Cao, H. Ouyang, J. Li, H. Qi and C. Wang, *Electrochimica Acta*, 2015, **180**, 227-233.
- 8. C. Kim, K.-Y. Lee, I. Kim, J. Park, G. Cho, K.-W. Kim, J.-H. Ahn and H.-J. Ahn, *Journal of Power Sources*, 2016, **317**, 153-158.
- 9. L. Luo, H. Qiao, W. Xu, D. Li, J. Zhu, C. Chen, Y. Lu, P. Zhu, X. Zhang and Q. Wei, *Journal of Solid State Electrochemistry*, 2017, **21**, 1385-1395.
- 10. H. Ying, S. Zhang, Z. Meng, Z. Sun and W.-Q. Han, *Journal of Materials Chemistry A*, 2017, **5**, 8334-8342.