Supporting Information

Constructing noble-metal-free Z-scheme photocatalytic overall water splitting systems using MoS₂ nanosheets modified CdS as a H₂ evolution photocatalyst

Yong-Jun Yuan,^a Daqin Chen,^{a,}* Shuhui Yang,^a Ling-Xia Yang,^b Jing-Jing Wang,^c Dapeng Cao,^d

Wenguang Tu,^e Zhen-Tao Yu,^{b,*} and Zhi-Gang Zou^b

^aCollege of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou

310018, People's Republic of China.

^bNational Laboratory of Solid State Microstructures and Collaborative Innovation Center of

Advanced Microstructures, Jiangsu Key Laboratory for Nano Technology, College of Engineering

and Applied Science, Nanjing University, Nanjing 210093, People's Republic of China.

^cCollege of Materials, Xiamen University, Xiamen 361005, People's Republic of China.

^dInstitute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications,

Nanjing 210023, People's Republic of China.

^eCollege of chemistry and biomedical engineering, Nanyang Technological University, Singapore 639798, Singapore

E-mail:dqchen@hdu.edu.cn or yuzt@nju.edu.cn

Scheme S1. Chemical structures of $[Co(bpy)_3](PF_6)_3/[Co(bpy)_3](PF_6)_2$ electron mediator.

Figure S1. XRD patterns of MoS₂/CdS HERs loaded with various amounts of MoS₂.

Figure S2. Raman spectra of bare CdS and 4 wt.% MoS₂/CdS composite.

Figure S3.UV-vis spectra of MoS₂/CdS HEP loaded with various amounts of MoS₂.

Figure S4. SEM image of pure CdS sample.

Figure S5. SEM image of pure MoS₂ sample.

Figure S6. XRD patterns of Co₃O₄/BiVO₄ OEPs loaded with various amounts of Co₃O₄.

Figure S7. UV-vis spectra of Co_3O_4 /BiVO₄ OEPs loaded with various amounts of Co_3O_4 .

Figure S8. SEM image of pure BiVO₄ sample.

Figure S9. SEM image of 1.5 wt.% $Co_3O_4/BiVO_4$ OEP.

Figure S10. TEM image of 1.5 wt.% $Co_3O_4/BiVO_4$ OEP.

Figure S11. Survey XPS spectra of 1.5 wt.% $Co_3O_4/BiVO_4$ composite.

Figure S12. high resolution XPS spectra of Bi 3d.

Figure S13. high resolution XPS spectra of V 2p.

Figure S14. high resolution XPS spectra of O 1s.

Figure S15. high resolution XPS spectra of Co 2p.

Figure S16. GC-MS of decomposition product collected from the reaction mixture after 4 h of visible light irradiation clearly reveals 2,2'-bipyridine (m/z = 156) dissociates from cobalt complexes electron mediator.

Figure 17. Cyclic voltammograms of the $[Co(bpy)_3]^{3+}/[Co(bpy)_3]^{2+}$ redox couple in saturated KCl solution (potential vs. Ag/AgCl).

$$4CdS \xrightarrow{hv} 4CdS(h^+ + e^-)$$
(1)

$$4\text{BiVO}_4 \xrightarrow{n\nu} 4\text{BiVO}_4(h^+ + e^-)$$
(2)

$$4CdS(h^{+} + e^{-}) + MoS_2 \longrightarrow 4CdS(h^{+}) + 4MoS_2(e^{-})$$
(3)

$$4MoS_2(e) + 4H^+ \longrightarrow 4MoS_2 + 2H_2$$
(4)

$$4CdS (h^{+}) + 4[Co(bpy)_{3}]^{2+} \longrightarrow 4CdS + 4[Co(bpy)_{3}]^{3+}$$
(5)

$$4\text{BiVO}_4(h^+ + e^-) + 4\text{Co}_3\text{O}_4 \longrightarrow 4\text{BiVO}_4(e^-) + 4\text{Co}_3\text{O}_4((h^+))$$
(6)

$$4\text{BiVO}_4(e^-) + 4[\text{Co}(\text{bpy})_3]^{3+} \longrightarrow 4\text{BiVO}_4 + 4[\text{Co}(\text{bpy})_3]^{2+}$$
(7)

$$4Co_{3}O_{4}(h^{+}) + 2H_{2}O \longrightarrow 4Co_{3}O_{4} + 4H^{+} + O_{2}$$
(8)

Scheme S2. Summarized transfer routes of photoinduced charge carriers in this Z-scheme system.

Sample	Sample concentration (mg/L)	Mo or Co concentration (mg/L)	$MoS_2 \text{ or } Co_3O_4$ concentration (mg/L)	cocatalyst/photocatalyst ratio (wt%)
4% MoS ₂ /CdS	403	8.87	14.79	3.67
1.5 % Co ₃ O ₄ /BiVO ₄	434	6.24	8.49	1.44

Table S1. Weight ratio of cocatalyst exhibited in 4% MoS_2/CdS and 1.5% $Co_3O_4/BiVO_4$ samples.

Table S2. Comparison of photocatalytic performance for water splitting between the current work and other reported studies.

Entry	H_2 evolution	O ₂ evolution	Light source	Activity $(umol h^{-1})$		Quantum yield	Ref
	photocataryst	prococacaryse		H ₂	0 ₂	(%)	
1	Ru-SrTiO₃:Rh	BiVO ₄	300 W Xe lamp	5.0	2.2		(1)
2	Ru-SrTiO₃:Rh	WO ₃	300 W Xe lamp (λ>420 nm)	5.7	2.4	0.4 (420 nm)	(2)
3	Ru-SrTiO₃:Rh	$AgNbO_3$	300 W Xe lamp (λ>420 nm)	1.9	0.7	0.1 (420 nm)	(2)
4	Ru-SrTiO₃:Rh	Bi ₂ MoO ₆	300 W Xe lamp (λ>420 nm)	12	5.2	0.9 (420 nm)	(2)
5	$Pt-IrO_2/Sm_2Ti_2S_2O_5$	PtO _x /H-Cs- WO₃	300 W Xe lamp (λ>420 nm)	4.06	1.61		(3)
6	Ru-SrTiO₃:Rh	BiVO ₄	300 W Xe lamp (λ>420 nm)	0.5	0.4		(4)
7	Pt/TaON	RuO ₂ /TaON	300 W Xe lamp (λ>420 nm)	10	4	0.1-0.2 (420 nm)	(5)
8	Pt/CaTaO ₂ N	Pt/WO ₃	300 W Xe lamp (λ>420 nm)	5.5	2.5	, , , , , , , , , , , , , , , , , , ,	(6)
9	Pt BaTiO₃:Rh	PtO _x /WO ₃	300 W Xe lamp (λ>420 nm)	1.7	0.6	0.5 (420 nm)	(6)
10	$Pt/H_4Nb_6O_{17}$	PtO ₂ /WO ₃	300 W Xe lamp (λ>420 nm)	2.2	0.9	0.05 (480nm)	(7)
11	Ru-SrTiO₃:Rh	BiVO ₄	300 W Xe lamp (λ>420 nm)	7.9	3.5		(8)
12	Pt-Ba(0.3)-Ta ₃ N₅	PtO _x /WO ₃	300 W Xe lamp	3.2	1.6		(9)
13	Pt-TaON	PtO _x /WO ₃	300 W Xe lamp	15.6	7.5		(10)
14	PRGO(Ru/SrTiO₃:Rh)	BiVO ₄	300 W Xe lamp (λ>420 nm)	3.5	1.4	1.03 (420nm)	(11)
15	Ru-SrTiO₃:Rh	Ir/CoO _x /Ta₃N	300 W Xe lamp (λ>420 nm)	~11.5	~5.5		(12)
16	Ru/SrTiO₃:Rh	BiVO ₄	300 W Xe lamp (λ>420 nm)	13	5.8		(13)
17	Pt/CuGaS₂	CoO _x /BiVO ₄	300 W Xe lamp (λ>420 nm)	3.5	1.7		(14)
21	MoS ₂ /CdS	Co ₂ O ₃ /BiVO ₄	300 W Xe lamp (λ>420 nm)	14.5	7.1	1.04 (420nm)	This work

References

- (1) Q. Jia, A. Iwase and A. Kudo, *Chem. Sci.*, 2014, **5**, 1513-1519.
- (2) Y. Sasaki, H. Nemoto, K. Saitoand and A. Kudo. J. Phys. Chem. C, 2009, 113, 17536-17542.
- (3) G. J. Ma, S. S. Chen, Y. B. Kuang, S. Akiyama, T. Hisatomi, M. Nakabayashi, N. Shibata, M. Katayama, T. Minegishi and K. Domen. *J. Phys. Chem. Lett.*, 2016, 7, 3892-3896
- (4) H. Kato, Y. Sasaki, N. Shirakura and A. Kudo. *J. Mater.Chem. A*, 2013, **1**, 12327-12333.
- (5) M. Higashi, R. Abe, A. Ishikawa, T. Takata, B. Ohtani and K. Domen, *Chem. Lett.*, 2008, **37**, 138-39..
- (6) K. Maeda, ACS Appl. Mater. Interfaces, 2014, 6, 2167-2173.
- (7) R. Abe, K. Shinmei, N. Koumura, K. Hara and B.Ohtani, J. Am.Chem.Soc., 2013, 135, 16872-16884.
- (8) Y. Sasaki, H. Katoand and A. Kudo, J. Am. Chem. Soc., 2013, 135, 5441-5449.
- (9) Y. Qi, S. S. Chen, M. R. Li, Q. Ding, Z. Li, J. Y. Cui, B.B. Dong, F. X. Zhang and C. Li. *Chem. Sci.*, 2017, 8, 437-443.
- (10)S. S. Chen, Q. Yu, T. Hisatomi, Q. Ding, T, Asai, Z. Li, S. S. K. Ma; F. X. Zhang, K. Domen and C.Li, *Angew. Chem. Int. Ed.*, 2015, **54**, 8498-8501.
- (11) A. Iwase, Y. H. Ng, Y. Ishiguro, A. Kudo and R. Amal, J. Am. Chem. Soc., 2011, 133, 11054-11057.
- (12)S. S. K. Ma, K. Maeda, T. Hisatomi, M. Tabata, A. Kudo and K. Domen, *Chem. Eur. J.*, 2013, **19**, 237480-7486.
- (13) Y. Sasaki, H, Kato and A. Kudo, J. Am. Chem. Soc., 2013, 135, 5441-5449.
- (14) A. Iwase, S. Yoshino, T. Takayama, Y. H. Ng, R. Amal and A. Kudo, *J. Am. Chem. Soc.*, 2016, **138**, 10260-10264.