Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information for Hollow and Microporous Catalysts Bearing Cr(III)-F Porphyrins for Room Temperature CO₂ Fixation to Cyclic Carbonates

Myung Hyun Kim,^a Taemoon Song,^b Ue Ryung Seo,^b Ji Eun Park,^b Kyoungil Cho,^a Sang Moon Lee,^c Hae Jin Kim,^c Yoon-Joo Ko,^d Young Keun Chung,^{*b} and Seung Uk Son^{*a}

^aDepartment of Chemistry, Sungkyunkwan University, Suwon 16419, Korea E-mail: <u>sson@skku.edu</u> ^bDepartment of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Korea *E-mail: <u>ykchung@snu.ac.kr</u>

^cKorea Basic Science Institute, Daejeon 34133, Korea ^dLaboratory of Nuclear Magnetic Resonance, National Center for Inter-University Research Facilities (NCIRF), Seoul National University, Seoul 08826, Korea

Fig. S1 IR spectra of tetra(4-ethynylphenyl)porphyrin and Cr(III)-Cl tetra(4-ethynylphenyl)porphyrin.

Fig. S2 (a) UV-vis absorption spectra and (b) SEM-EDS analysis of CrCl-tetra(4-ethynylphenyl)porphyrin and CrF-tetra(4-ethynylphenyl)porphyrin.

Cr-F porphyrin M

	Spec	trum 1	3		r
		lon a			l
- 4	1 12		8 27	22	
4		100	19		
		1			ł

Element	Line Type	Apparent Concentration	k Ratio	Wt96	Atomic %	Standard Label	Factory Standard	Standard Calibration Date
F	K series	0.35	0.00068	72.76	83.29	CaF2	Yes	
CI	K series	0.14	0.00126	27.24	16.71	NaCl	Yes	
Total:				100.00	100.00			

2.5µm

Fig. S4 XPS N 1s and C 1s orbital spectra of H-MCrPN, H-MPN, and H-MZnPN.

Binding Energy / eV

Fig. S5 (a) The catalytic activity comparison of H-MCrPN and nonhollow-MCrPN which was prepared by the same synthetic procedures of H-MCrPN without use of template. Reaction conditions: styrene oxide (12.5 mmol), no additional solvent, catalyst (0.49 mol% Cr porphyrins, 0.061 mmol, 71 mg of H-MCrPN, 73 mg of nonhollow-MCrPN), TBABr (0.90 mmol), room temperature, and CO_2 (balloon). According to elemental analysis of N (4.73wt%) in nonhollow-MCrPN, the Cr-porphyrin content in the material was calculated to 0.84 mmol/g of catalyst. (b) SEM image and (c) N₂ adsorption-desorption isotherm curves of nonhollow-MCrPN.

Epoxide substrate	Simulated epoxide	Distance between white balls in the left molecular figures
		7.78 Å
		8.09 Å
		10.56 Å
		6.33 Å
О		4.85 Å
		8.22 Å
		9.19 Å
		7.70 Å
0		4.82 Å
0		5.47 Å

Fig.	S6	The size	evaluation	of epoxic	le substrates	(calculated b	y Gaussian09).
				1			/

Fig. S7 Chemoselectivities of poor substrates (glycidol and cyclohexene oxide) for cyclic carbonate depending on co-catalysts. Reaction conditions: epoxide (12.5 mmol), no additional solvent, H-MCrPN (71 mg, 0.49 mol% metal porphyrins, 0.061 mmol), cocatalyst (0.90 mmol), room temperature, 48 h, and CO₂ (balloon).

Fig. S8 IR spectra of H-MCrPN before and after reaction (after five cycles).

Fig. S9 ¹H and ¹³C NMR spectra of products.

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Fig. S10 (a) CO_2 sorption isotherm curves and (b) $CO_2 Q_{st}$ behaviors of H-MCrPN.

Table S1 Survey of catalytic activities of the recent heterogeneous catalytic systems for CO_2 fixation to cyclic carbonates. SO: styrene oxide, PO: propylene oxide. Reference numbers in text.

Catalyst	catalyst	Substrate	CO pressure	Temperature	Time	Yield	TON	TOF	Ref
	(mol%)		(atm)	(°C)	(h)	(%)		(h ⁻¹)	
Al-salen/SiO ₂	2.5	SO	1	26	24	80	32	1.3	Ref. 16
Zn cluster	2	SO	1	25	20	94	47	2.4	Ref. 17
Cr-salen/POP	0.44	SO	ambient	rt	48	51.6	117	2.4	Ref. 18
Co-salen/POP	0.488	PO*	ambient	25	48	81.5	167	3.5	Ref. 19
H-MCrPN	0.488	SO	ambient	rt	48	93	190	4	This work
Al-porphyrin/HCP	0.25	SO	9.9	40	6	91	364	61	Ref.11
Co-porphyrin/POP	0.22	SO	ambient	50	48	74.2	337	7	Ref. 20
Al-salen/ionic POP	0.25	SO	9.9	60	24	82	328	14	Ref. 10
ZnBr ₂ -NHC-polymer	1	SO	1	80	10	94	94	9	Ref. 40
Phosphonium/PIP	0.6	SO	ambient	80	72	67.4	112	1.6	Ref. 7
Phosphonium/SiO ₂	1	SO	9.9	90	6	86	86	14	Ref. 37
Co-salen/POP	0.274	SO	20	100	6	97	354	59	Ref. 26
Porphyrin-catechol/COF	0.2	SO	1	110	12	98	490	41	Ref. 6
Zn-porphyrin/BIO	0.1	SO	16.8	120	4	88	880	220	Ref. 8
Zn-salen/CMP	0.1	SO	29.6	120	1	96.4	964	964	Ref. 24
PPh ₃ -ILBr-ZnBr ₂ /POP	0.0125	SO	29.6	120	1	20	1600	1600	Ref. 5
Amino acid/PS	0.6	SO	88.8	130	24	91	152	6.3	Ref. 41