Electronic Supplementary Information (ESI)

Surfactant-free synthesis of nanoperforated graphene/nitrogen-doped carbon nanotube composite for supercapacitors

Yeon Jun Choi,^a Hyun-Kyung Kim,^b Suk-Woo Lee,^a Young Hwan Kim,^a Hee-Chang Youn,^a Kwang Chul Roh,^{*c} and Kwang-Bum Kim^{*a}

^a Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemoon-gu, Seoul 120-749, Republic of Korea. E-mail: kbkim@yonsei.ac.kr

^b Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom

^c Energy Efficient Materials Team, Energy & Environmental Division, Korea Institute of Ceramic Engineering & Technology, 101, Soho-ro, Jinju 660-031, Republic of Korea. E-mail: rkc@kicet.re.kr

Fig. S1 (a,b) TEM images of GO/pristine CNT, (c,d) GO/ACNT, and (e,f) GO/N-CNT.

Fig. S2 SEM image of PG/N-CNT.

Fig. S3 TEM image of PG after HI acid treatment.

Fig. S4 Sn 3d peak of SnO₂/RGO/N-CNT. The Sn 3d XPS spectra of SnO₂/RGO/N-CNT show the Sn $3d_{5/2}$ and Sn $3d_{3/2}$ peaks associated with the SnO₂ nanocatalysts at 487.5 and

495.9 eV

Fig. S5 Cyclic voltammograms of (a) PG and (b) PG/N-CNT-1 at scan rates of 30–500 mV/s.

Fig. S6 Cycling stability of PG electrode at current density of 10 A/g.

Fig. S7 Electrochemical properties of (a) PG/N-CNT-2 and (b) PG/N-CNT-1 as determined through half-cell tests in 1 M LiPF₆ in EC/DMC (1:1, v/v) electrolyte. (c) Specific capacities of PG/N-CNT-2 and PG/N-CNT-1 as functions of current densities.

Sample	Carbon	Oxygen	Vgen Nitrogen	
	(at. %)	(at. %)	%) (at. %)	
N-CNT	92.05	4.68	3.28	

 Table S1. Elemental contents data of N-CNT sample.

Materials	C _g (F/ g)	Electrolyte	Ref.
Pillared graphene/CNT	144 (3.6 A/g)	1 M TEABF ₄ /PC	[1]
Graphene/CNT composite film	110 (1 A/g)	1 M TEABF ₄ /PC	[2]
Plasma reduced RGO paper	181 (10 mV/s)	1 M TEABF ₄ /ACN	[3]
Porous graphene	140 (0.1 A/g)	1 M TEABF ₄ /ACN	[4]
Activated graphene hydrogel	184 (0.2 A/g)	BMIM BF ₄ ionic liquid electrolyte	[5]
hierarchically porous nanocarbon/graphene	185 (0.5 A/g)	EMIM BF ₄ ionic liquid electrolyte	[6]
Activated graphene/CNT film	200 (0.5 A/g)	EMIM BF ₄ ionic liquid electrolyte	[7]
Nitrogen-doped porous carbon/graphene	188 (5 A/g)	1 M TEABF ₄ /ACN	[8]
Sponge-templated activated graphene	207 (0.5 A/g)	1 M TEABF ₄ /ACN	[9]
Nanoperforated graphene/nitrogen-doped CNT	288 (0.5 A/g)	1 M TEABF ₄ /ACN	This work

 Table S2. Comparison of the specific capacitances of carbon-based electrodes.

References

- 1. W. Wang, M. Ozkan and C. S. Ozkan, J. Mater. Chem. A, 2016, 4, 3356-3361.
- N. Jung, S. Kwon, D. Lee, D. M. Yoon, Y. M. Park, A. Benayad, J. Y. Choi and J. S. Park, *Adv. Mater.*, 2013, 25, 6854-6858.
- Z. Bo, W. G. Zhu, X. Tu, Y. Yang, S. Mao, Y. He, J. H. Chen, J. H. Yan and K. F. Cen, J. Phys. Chem. C, 2014, 118, 13493-13502.
- 4. H. J. Wang, X. X. Sun, Z. H. Liu and Z. B. Lei, *Nanoscale*, 2014, **6**, 6577-6584.
- H. Li, Y. Tao, X. Y. Zheng, Z. J. Li, D. H. Liu, Z. Xu, C. Luo, J. Y. Luo, F. Y. Kang and Q. H. Yang, *Nanoscale*, 2015, 7, 18459-18463.
- H. T. Zhang, K. Wang, X. Zhang, H. Lin, X. Z. Sun, C. Li and Y. W. Ma, J. Mater. Chem. A, 2015, 3, 11277-11286.
- D. T. Pham, T. H. Lee, D. H. Luong, F. Yao, A. Ghosh, V. T. Le, T. H. Kim, B. Li, J. Chang and Y. H. Lee, *Acs Nano*, 2015, 9, 2018-2027.
- Y. Zhang, B. L. Tao, W. Xing, L. Zhang, Q. Z. Xue and Z. F. Yan, *Nanoscale*, 2016, 8, 7889-7898.
- J. Xu, Z. Q. Tan, W. C. Zeng, G. X. Chen, S. L. Wu, Y. Zhao, K. Ni, Z. C. Tao, M. Ikram, H. X. Ji and Y. W. Zhu, *Adv. Mater.*, 2016, 28, 5222-5228.