Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information for

Capacitance-enhanced sodium-ion storage in nitrogen-rich hard carbon

Rohit Ranganathan Gaddam,^a Amir H. Farokh Niaei,^b Marlies Hankel,^b Debra J. Searles,^{b,c} Nanjundan Ashok Kumar^{a*} and X. S. Zhao^{a*}

^aSchool of Chemical Engineering, The University of Queensland, St Lucia, Brisbane 4072 Australia.

^bCentre for Theoretical and Computational Molecular Science, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia

^c School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia

Correspondence to: <u>ashok.nanjundan@uq.edu.au</u>, <u>geroge.zhao@uq.edu.au</u>;

Figure S1. Transmission electron microscope image of HCS.

Figure S2. Energy dispersive X-ray mapping of HCS: (a) electron image, (b) carbon, and (c) oxygen.

Figure S3. Charge-discharge curves at different rates for (a) HCS and (b) *N*-HCS tested against sodium.

Table S1. Physical and chemical	l properties of HCS and N-HCS
---------------------------------	-------------------------------

Sample	BET surface	Pore volume	Elemental composition	d-spacing	I_D/I_G
	area (m ² /g)	$(cm^{3/g})$	(at. %)		ratio
HCS	82	0.04	C (69.81), O (30.19)	0.37 nm	0.75
N-HCS	16	0.03	C (72.77), N (9.06), O	0.39 nm	0.86
			(18.17)		

Table S2. Kinetic parameters obtained from equivalent circuit fittings of the experimental data for samples HCS and *N*-HCS before and after 5 cycles.

Sample	$R_{ m el}\left(\Omega ight)$	$R_{\rm ct}(\Omega)$
HCS (before cycling)	14.46	100.5
HCS (after 5 cycles)	10.04	131.3
N-HCS (before cycling)	12.30	20.78
N-HCS (after 5 cycles)	13.40	27.96

Material	Synthesis method	Potential Range (V)	Electrolyte*	Capacity (mA h g ⁻¹)	Cycling stability	Rate capability	Remarks	Theoretical studies performed	Ref.
<i>N</i> -HCS	Hydrothermal synthesis followed by pyrolysis	0.005 - 3	NaClO ₄ in EC, PC and FEC	520 at 20 mA g ⁻¹	~204 mAhg ⁻¹ obtained after 1000 cycles at 1 A g ⁻¹	333 mA h g ⁻¹ at 0.05 A g ⁻¹ 277 mA h g ⁻¹ at 1 A g ⁻¹	Highly stable cycling performance.	Yes	This work
Nitrogen rich porous carbon	Pyrolysis in Ar atmosphere	0.01 - 3	NaPF ₆ in EC and DC	335 at 100 mA g ⁻¹	~130 mA h g ⁻¹ at 5 A g ⁻¹ after 1000 cycles was obtained.	256 mA h g ⁻¹ at 0.2 A g ⁻¹ 213 mA h g ⁻¹ at 1 A g ⁻¹	A sloping profile was observable during charge- discharge	No	1
Nitrogen-rich bamboo-like carbon	Pyrolysis in Ar atmosphere	0.01 - 3	NaClO ₄ in EC and DC	270 at 50 mA g ⁻¹	Lower than 120 mA h g ⁻¹ at 0.5 A g ⁻¹ after 160 cycles was obtained	167 mA h g ⁻¹ at 0.1 A g ⁻¹ 138 mA h g ⁻¹ at 0.2 A g ⁻¹	Hollow structure and nitrogen content was credited to the performance	No	2
Nitrogen- doped carbon/graphe ne hybrid	Pyrolysis in N ₂ atmosphere between 700- 800 °C	0.01 - 3	NaClO ₄ in EC and DC	303 at 50 mA g ⁻¹	~270 mA h g ⁻¹ after 200 cycles was obtained.	207 mA h g ⁻¹ at 1 A g ⁻¹ 177 mA h g ⁻¹ at 2 A g ⁻¹	Large interlayer spacing and high content of nitrogen provide good performance	No	3
Nitrogen-rich	Pyrolysis in N ₂	0.01 - 3	NaClO ₄ in	338 at 30	~252 mA h g ⁻	86 mA h g ⁻¹	Amorphous	No	4

Table S3. A comparison of the N-rich carbon with those reported in the literature for sodium-ion batteries

mesoporous carbon	atmosphere at 700 °C		EC and DC	mA g ⁻¹	¹ at 50 mA g ⁻¹ after 100 cycles was obtained.	at 1 A g ⁻¹ 48.9 mA h g ⁻¹ at 2 A g ⁻¹	crystallites with a porous structure and large interlayer spacing provide good stability.		
N-doped porous carbon	KOH activation followed by Pyrolysis in N ₂ atmosphere	0.01 – 2.5	NaTFSI in EC and DC	274 at 25 mA g ⁻¹	Good cycling stability for 100 cycles was observed with 88% capacity retention	58 mA h g ⁻¹ at 2 A g ⁻¹ 37 mA h g ⁻¹ at 4 A g ⁻¹	Carbons derived from garlic peel waste.	No	5
Nitrogen doped holey carbon nano- sheets	KOH activation followed by Pyrolysis in N ₂ atmosphere	0.01 - 3	NaPF ₆ in EC and DMC	323 at 100 mA g ⁻¹	~80 mA h g ⁻¹ at 1 A g ⁻¹ after 400 cycles was obtained.	194 mA h g ⁻¹ at 0.2 A g ⁻¹ 139 mA h g ⁻¹ at 0.5 A g ⁻¹	Unique porous structure and nitrogen doping endow superior electrochemical performance	No	6
Nitrogen- doped carbon nanofiber films	Heating in vacuum followed by carbonising in Ar atmosphere	0.01 - 3	NaClO ₄ in EC, DC and FEC	377 at 100 mA g ⁻¹	~210 mA h g ⁻¹ at 5 A g ⁻¹ after 7000 cycles was obtained.	315 mA h g ⁻¹ at 0.5 A g ⁻¹ 154 mA h g ⁻¹ at 15 A g ⁻¹	A free standing electrode	No	7
Nitrogen- doped carbon	Pyrolysis in N ₂ atmosphere at	0.01 - 2	NaPF ₆ in EC, DC and	150 at 200 mA	~134 mA h g ⁻ ¹ at 0.2 A g ⁻¹	139 mA h g ⁻¹ at 0.5 A g ⁻¹	Material prepared from polypyrrole	No	8

nanofibers	600 °C		PC	g-1	after 200 cycles was obtained.	132 mA h g ⁻¹ at 1 A g ⁻¹	nanofiber		
Nitrogen- doped carbon microspheres	Hydrothermal synthesis followed by thermal treatment	0.005 - 3	NaClO ₄ in EC and PC	336 at 50 mA g ⁻¹	~104 mA h g ⁻¹ at 10 A g ⁻¹ after 12500 cycles was obtained.	148 mA h g ⁻¹ at 5 A g ⁻¹ 132 mA h g ⁻¹ at 1 A g ⁻¹	Highly stable cycling performance	No	9
Nitrogen- doped carbon sheets	Hydrothermal treatment followed by pyrolysis	0.01 – 2	NaClO ₄ in EC, DMC and FEC	315 at 0.15 C	~247 mA h g ⁻ ¹ at 0.3 C after 50 cycles was obtained.	ca.100 mA h g ⁻¹ at 3 C 32.3 mA h g ⁻¹ at 30 C	High capacity and long cycle life batteries obtained	No	10

*PC = propylene carbonate, FEC = fluoroethylene carbonate, DMC = dimethyl carbonate, EC = ethylene carbonate, DC = diethyl carbonate.

References

- 1. L. Wang, C. Yang, S. Dou, S. Wang, J. Zhang, X. Gao, J. Ma and Y. Yu, *Electrochim. Acta*, 2016, **219**, 592-603.
- 2. D. Li, L. Zhang, H. Chen, L. X. Ding, S. Wang and H. Wang, *Chem Commun (Camb)*, 2015, **51**, 16045-16048.
- 3. H. Liu, M. Jia, B. Cao, R. Chen, X. Lv, R. Tang, F. Wu and B. Xu, J. Power Sources, 2016, 319, 195-201.
- 4. H. Liu, M. Jia, N. Sun, B. Cao, R. Chen, Q. Zhu, F. Wu, N. Qiao and B. Xu, ACS Appl. Mater. Inter., 2015, 7, 27124-27130.
- 5. V. Selvamani, R. Ravikumar, V. Suryanarayanan, D. Velayutham and S. Gopukumar, *Electrochim. Acta*, 2016, **190**, 337-345.
- 6. H. g. Wang, Z. Wu, F. I. Meng, D. I. Ma, X. I. Huang, L. m. Wang and X. b. Zhang, *ChemSusChem*, 2013, 6, 56-60.
- 7. S. Q. Wang, L. Xia, L. Yu, L. Zhang, H. H. Wang and X. W. Lou, Adv. Energy Mater., 2016, 6, 1502217.
- 8. Z. Wang, L. Qie, L. Yuan, W. Zhang, X. Hu and Y. Huang, *Carbon*, 2013, 55, 328-334.
- 9. D. Yan, C. Y. Yu, X. J. Zhang, W. Qin, T. Lu, B. W. Hu, H. L. Li and L. K. Pan, *Electrochim. Acta*, 2016, **191**, 385-391.
- 10. T. Yang, T. Qian, M. Wang, X. Shen, N. Xu, Z. Sun and C. Yan, *Adv. Mater.*, 2016, 28, 539-545.