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Figure S1. Transmission electron microscope image of HCS.

(a) (b) (c)

Figure S2. Energy dispersive X-ray mapping of HCS: (a) electron image, (b) carbon, and (c) 
oxygen.
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Figure S3. Charge-discharge curves at different rates for (a) HCS and (b) N-HCS tested 
against sodium.

Table S1. Physical and chemical properties of HCS and N-HCS

Sample BET surface 
area (m2/g)

Pore volume
(cm3/g)

Elemental composition
(at. %)

d-spacing ID/IG 
ratio

HCS 82 0.04 C (69.81), O (30.19) 0.37 nm 0.75
N-HCS 16 0.03 C (72.77), N (9.06), O 

(18.17)
0.39 nm 0.86

Table S2. Kinetic parameters obtained from equivalent circuit fittings of the experimental data 
for samples HCS and N-HCS before and after 5 cycles.

Sample Rel (Ω) Rct (Ω)

HCS (before cycling) 14.46 100.5

HCS (after 5 cycles) 10.04 131.3

N-HCS (before cycling) 12.30 20.78

N-HCS (after 5 cycles) 13.40 27.96



Table S3.  A comparison of the N-rich carbon with those reported in the literature for sodium-ion batteries

Material Synthesis 
method

Potential 
Range 
(V)

Electrolyte*
Capacity
(mA h g-1)

Cycling 
stability

Rate 
capability

Remarks Theoretical 
studies 
performed

Ref.

N-HCS Hydrothermal 
synthesis 
followed by 
pyrolysis

0.005 – 3 NaClO4 in 
EC, PC and 
FEC

520 at 20 
mA g-1

~204 mAhg-1 
obtained after 
1000 cycles 
at 1 A g-1

333 mA h g-1 
at 0.05 A g-1

277 mA h g-1 
at 1 A g-1

Highly stable 
cycling 
performance.

Yes This 
work

Nitrogen rich 
porous carbon

Pyrolysis in Ar 
atmosphere

0.01 - 3 NaPF6 in EC 
and DC

335 at 
100 mA 
g-1

~130 mA h g-

1 at 5 A g-1 
after 1000 
cycles was 
obtained.

256 mA h g-1 
at 0.2 A g-1

213 mA h g-1 
at 1 A g-1

A sloping profile 
was observable 
during charge-
discharge

No 1

Nitrogen-rich 
bamboo-like 
carbon

Pyrolysis in Ar 
atmosphere

0.01 - 3 NaClO4 in 
EC and DC

270 at 50 
mA g-1

Lower than 
120 mA h g-1 

at 0.5 A g-1 
after 160 
cycles was 
obtained.

167 mA h g-1 
at 0.1 A g-1

138 mA h g-1 
at 0.2 A g-1

Hollow structure 
and nitrogen 
content was 
credited to the 
performance

No 2

Nitrogen-
doped 
carbon/graphe
ne hybrid

Pyrolysis in N2 
atmosphere 
between 700-
800 °C

0.01 - 3 NaClO4 in 
EC and DC

303 at 50 
mA g-1

~270 mA h g-

1 at 50 mA g-1 
after 200 
cycles was 
obtained.

207 mA h g-1 
at 1 A g-1

177 mA h g-1 
at 2 A g-1

Large interlayer 
spacing and high 
content of 
nitrogen provide 
good 
performance

No 3

Nitrogen-rich Pyrolysis in N2 0.01 - 3 NaClO4 in 338 at 30 ~252 mA h g- 86 mA h g-1 Amorphous No 4



mesoporous 
carbon

atmosphere at 
700 °C

EC and DC mA g-1 1 at 50 mA g-1 
after 100 
cycles was 
obtained.

at 1 A g-1

48.9 mA h g-1 
at 2 A g-1

crystallites with a 
porous structure 
and large 
interlayer spacing 
provide good 
stability. 

N-doped 
porous carbon

KOH activation 
followed by 
Pyrolysis in N2 
atmosphere 

0.01 – 2.5 NaTFSI in 
EC and DC

274 at 25 
mA g-1

Good cycling 
stability for 
100 cycles 
was observed 
with 88% 
capacity 
retention

58 mA h g-1 
at 2 A g-1

37 mA h g-1 
at 4 A g-1

Carbons derived 
from garlic peel 
waste. 

No 5

Nitrogen 
doped holey 
carbon nano-
sheets

KOH activation 
followed by 
Pyrolysis in N2 
atmosphere

0.01 - 3 NaPF6 in EC 
and DMC

323 at 
100 mA 

g-1

~80 mA h g-1 

at 1 A g-1 
after 400 
cycles was 
obtained.

194 mA h g-1 
at 0.2 A g-1

139 mA h g-1 
at 0.5 A g-1

Unique porous 
structure and 
nitrogen
doping endow 
superior 
electrochemical 
performance

No 6

Nitrogen-
doped carbon 
nanofiber 
films

Heating in 
vacuum 
followed by 
carbonising in 
Ar atmosphere

0.01 - 3 NaClO4 in 
EC, DC and 

FEC

377 at 
100 mA 

g-1

~210 mA h g-

1 at 5 A g-1 
after 7000 
cycles was 
obtained.

315 mA h g-1 
at 0.5 A g-1

154 mA h g-1 
at 15 A g-1

A free standing 
electrode

No 7

Nitrogen-
doped carbon 

Pyrolysis in N2 
atmosphere at 

0.01 - 2 NaPF6 in 
EC, DC and 

150 at 
200 mA 

~134 mA h g-

1 at 0.2 A g-1 
139 mA h g-1 
at 0.5 A g-1

Material prepared 
from polypyrrole 

No 8



nanofibers 600 °C PC g-1 after 200 
cycles was 
obtained.

132 mA h g-1 
at 1 A g-1

nanofiber

Nitrogen-
doped carbon 
microspheres

Hydrothermal 
synthesis 
followed by 
thermal 
treatment

0.005 – 3 NaClO4 in 
EC and PC 

336 at 50 
mA g-1

~104 mA h g-

1 at 10 A g-1 
after 12500 
cycles was 
obtained.

148 mA h g-1 
at 5 A g-1

132 mA h g-1 
at 1 A g-1

Highly stable 
cycling 
performance

No 9

Nitrogen-
doped carbon 
sheets

Hydrothermal 
treatment 
followed by 
pyrolysis

0.01 – 2 NaClO4 in 
EC, DMC 
and FEC

315 at 
0.15 C

~247 mA h g-

1 at 0.3 C 
after 50 
cycles was 
obtained.

ca.100 mA h 
g-1 at 3 C

32.3 mA h g-1 
at 30 C

High capacity 
and long cycle 
life batteries 
obtained

No 10

*PC = propylene carbonate, FEC = fluoroethylene carbonate, DMC = dimethyl carbonate, EC = ethylene carbonate, DC = diethyl carbonate.
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