Supporting Information

Novel Imidazolium-Based Poly(ionic liquid)s with Different Counter Ions for Self-Healing

Jing Cui,^a Feng-Min Nie,^a Ji-Xing Yang,^a Li Pan,^{*a} ZheMa,^a Yue-Sheng Li ^{a,b}

^a Tianjin Key Lab Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
^b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China

^{*}Corresponding Author. E-mail: lilypan@tju.edu.cn

Fig. S1. The ¹H NMR spectra of imidazolium-based norbornene derivatives with different counter ions (methyl sulfoxide-d6).

Fig. S2. The ¹H NMR spectra of PILs (methyl sulfoxide-d6).

Fig. S3. DSC curves of PILs.

Fig. S4. TGA curves of PILs.

Fig. S5. An optimized model for ion aggregation of an imidazolium cation surrounded by a Tf_2N^- counter ion and a $CF_3SO_3^-$ counter ion.

Table S1. Interaction Energies ^{*a*} for 3-Bicyclo[2.2.1]hept-5-en-2-ylmethyl-1-decyl-3Himidazolium ([BDI]) with two different counter ions (Tf_2N^- and M^-) shown in Fig. S5.

Å/(kcal/mol)	CH ₃ SO ₃ -	CF ₃ SO ₃ -	$CF_3(CF_2)_3SO_3^-$
N(0)-N(1)	3.014	2.988	2.982
N(0)-N(2)	3.339	3.299	3.285
S-N(1)	3.973	3.947	3.963
S-N(2)	3.408	3.383	3.401
ΔE	-114.4	-108.8	-107.7

^{*a*} All calculations were carried out at the level of M05-2X/6-31+G(d) planted in Gaussian 09 program.

Sample	Young's modulus	Yield stress	Breaking	Breaking
	(MPa) <i>b</i>	(MPa)	stress (MPa)	strain (%)
Poly[BDI][FSI]	7.76±0.49	× ^c	3.98±0.25	1843±58
Poly[BDI][CH ₃ SO ₃]-30	42.20±3.62	3.90 ± 0.08	6.97 ± 0.44	722±25
Poly[BDI][CH ₃ SO ₃]-50	146.00 ± 2.94	13.15±0.57	11.48 ± 0.34	481±15
Poly[BDI][CF ₃ SO ₃]-30	14.68 ± 1.80	×	4.49±0.13	1170±23
Poly[BDI][CF ₃ SO ₃]-50	49.00±2.16	4.60 ± 0.21	7.12±0.16	705±33
Poly[BDI][CF ₃ SO ₃]-70	90.70±5.86	9.25±0.67	9.35±0.40	537±8
Poly[BDI][CF ₃ (CF ₂) ₃ SO ₃]-30	13.78±1.06	×	3.58 ± 0.15	1238±33
Poly[BDI][CF ₃ (CF ₂) ₃ SO ₃]-50	43.05±2.05	3.41±0.01	6.24±0.19	707±27

Table S2. Mechanical properties of polymer blends and Poly[BDI][FSI].^a

^{*a*} Strain rate = 100 mm min⁻¹, room temperature; ^{*b*} Young's modulus, calculated from the initial slope of stress-strain curves(strain < 5%); ^{*c*} no detected.

Fig. S6. SEM photograph of Poly[BDI][Tf₂N][CF₃SO₃]-50.

Fig. S7. Stress-strain curves of the original and healed polymer blends. (a) $Poly[BDI][CH_3SO_3]-30$; (b) $Poly[BDI][CH_3SO_3]-50$; (c) $Poly[BDI][CF_3(CF_2)_3SO_3]-30$; (d)

$Poly[BDI][CF_3(CF_2)_3SO_3]-50.$

Fig. S8. Plots of the recovery efficiency of fracture strain as a function healing time for $Poly[BDI][Tf_2N][CF_3(CF_2)_3SO_3]$ -50 at different temperatures, black plot represented room temperature and red plot represented 50 °C; Error bars denoted the standard deviations from at least five experiments