Electronic Supplementary Information (ESI)

Efficient and thermally stable inverted perovskite solar cells by introduction of non-fullerene electron transporting material

Jin Hyuck Heo,^a Seung-Chul Lee,^b Jung-Su Kyo,^b O-Pil Kwon,^{b,*} and Sang Hyuk Im^{a,*}

Experimental

Synthesis of ETM

The synthetic method of NDI-PM compound in the absence of catalyst have been previously reported in Ref. [9]. NDI-PM powder used in this work was purified by recrystallization in DMF solution without additional purification process.

Analysis of Crystal Characteristics

To analysis of crystal characteristics including intermolecular interactions and void characteristics of NDI-PM and PCBM crystals, the solvent-free crystal structures of NDI-PM and PCBM are obtained from Ref. [9] and [13a], respectively. The intermolecular secondary-bonds were analyzed by Hirshfeld surface with its fingerprints [15] using *CrystalExplorer* (Version 3.1: S. K. Wolff, D. J. Grimwood, J. J. McKinnon, M. J. Turner, D. Jayatilaka, and M. A. Spackman, *CrystalExplorer(Version3.1)*, University of Western Australia, 2012). The void characteristics including content and shape in crystals were analyzed by MERCURY program [16] in Cambridge Structural Database (CSD).[16]

Device fabrication

To fabricate the perovskite solar cell, In-doped SnO₂ (ITO, 10 Ω , AMG) glass substrates were sequentially washed by ultrasonicator with 5% Hellmanex soap, ethanol, acetone, and then ITO glass substrates were treated by plasma the organic residues. filtered Ar to remove А poly(3,4ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS, AI4083, Clevios)/ methanol (1:1 vol:vol) was coated on a cleaned ITO glass substrate by spin-coating at 2000 rpm for 30 s and dried at150 °C for 20 min. For MAPbI₃ perovskite film, 40 wt% MAPbI₃ perovskite solution was prepared by mixing the methylammonium iodide powder (MAI, DS LOGICS CO., LTD.) and lead (II) iodide (PbI₂, Aldrich) (1:1 mol:mol) in N,N-dimethylformamide (DMF, Aldrich) at 60 °C for 30 min, and 100 µL hydriodic acid (HI, Aldrich) was added in 1mL MAPbI₃ perovskite solution at room temperature. 40wt% MAPbI₃ perovskite solution was spin-coated on the PEDOT:PSS/ITO substrate at 3000 rpm for 120 s, and then was dried on the hot plate at 100 °C for 2 min. For FAPbI_{3-x}Br_x perovskite film, PbI₂(DMSO)₂ complex was prepared by dissolving 50 g PbI₂ in 150 mL dimetylsulfoxide (DMSO, Aldrich) at 60 °C for 30 min, and then 350 mL toluene slowly dropped into the PbI₂ solution. The white precipitate was filtered and was annealed in vacuum oven at 60 °C for 5h. 1 M PbI₂(DMSO) complex was dissolved in DMF at 60 °C for 5 min. The PbI₂(DMSO) complex solution was coated by spin coating at 3000 rpm for 30 s followed by spincoating of 0.5 M FAI and MABr (0.85:0.15 mol:mol) mixture solution in iso-propanol (IPA, Aldrich) at 5000 rpm for 30 sec. The film tuned from clear to dark brown during spin-coating was dried on the hot plate at 150 °C 20 min. After preparing the perovskite film, a phenyl-C61-butyric acid methyl ester (PCBM, nano-C)/1,2-dichlorobenzen (1,2-DCB) solution (20 mg/1 mL) or NDI-PM/1,2-DCB solution (15 mg/ 1 mL) was coated on the perovskite film/PEDOT:PSS/ITO substrate by spin-coating at 3000 rpm for 60 s. Finally, Al counter electrode was deposited by thermal evaporation. The active area was fixed 0.16 cm².

Device characterization

The current density-voltage curves were measured by a solar simulator (Peccell, PEC-L01) with a potentiostat (IVIUM, IviumStat) at under illumination of 1 sun (100 mW/cm² AM 1.5G) and a calibrated Si-reference cell certificated by JIS (Japanese Industrial Standards). The J-V curves of all devices were measured by masking the active area with metal mask of 0.096 cm². To measure the hysteresis of J-V curves, the forward and reverse scan rate was set to 10 mV·200 ms⁻¹ as a standard condition. The external quantum efficiency (EQE) was measured by a power source (ABET, 150W Xenon lamp, 13014) with a monochromator (DONGWOO OPTRON Co., Ltd., MonoRa-500i) and potentiostat (IVIUM, IviumStat). The morphorlogy of NDI-PN and PCBM film were obtained by measuring atomic force microscope (AFM, XE-100, park system). The PL life time of NDI-PN and PCBM were measured by a ChronosBH-ISS technology measuring equipment

Table S1. Fitting parameter for the TRPL decay curves of MAPbI₃, MAPbI₃/PCBM or NDI-PM, and FAPbI_{3-x}Br_x, FAPbI_{3-x}Br_x/PCBM or NDI-PM films.

Sample	A ₁ (%)	τ_1 (ns)	A ₂ (%)	$\tau_2(ns)$	$\tau_{avg}(ns)$
MAPbI ₃	65.79	4.45	34.21	13.60	9.03
MAPbI ₃ /NDI-PM	60.49	2.51	39.51	5.84	4.18
MAPbI ₃ /PCBM	58.92	1.08	41.08	3.76	2.42
FAPbI ₃	50.72	4.41	49.28	14.88	9.65
FAPbI ₃ /NDI-PM	60.87	2.06	39.13	5.22	3.64
FAPbI ₃ /PCBM	55.87	1.60	44.13	4.33	2.96

Fig. S1. Device statics (a) V_{oc} , (b) J_{sc} , (C) FF, and (d) PCE of the inverted MAPbI₃ and FAPbI_{3-x}Br_x perovskite planar solar cells with NDI-PM and PCBM ETM.

Fig. S2. I-V curves of NDI-PM and PCBM based devices before (0 min) and after heat-treatment (100 min) on the hot-plate at 90 °C

Table S2. Summary of photovoltaic properties of NDI-PM and PCBM based devices before and after here	eat-
treatment.	

ETM	Perovskite	Scan direction	V _{oc} (V)	J _{sc} (mA/cm ²)	FF (%)	η (%)
NDI- PM/initial	MAPbI ₃	Forward	1.10	21.2	77.2	18.0
NDI-PM/final	MAPbI ₃	Forward	1.09	21.1	76.9	17.7
PCBM/initial	MAPbI ₃	Forward	1.11	21.4	78.8	18.7
PCBM/final	MAPbI ₃	Forward	1.08	20.7	77.5	17.3

Fig. S3 Device efficiency of inverted MAPbI $_3$ perovskite planar solar cells with different thickness of NDI-PM.