## **Electronic Supporting Information (ESI)**

## Copper deficient Zn-Cu-In-Se quantum dot sensitized solar cells for high efficiency

Linlin Zhang,<sup>ab</sup> Zhenxiao Pan,<sup>\*b</sup> Wei Wang,<sup>a</sup> Jun Du,<sup>a</sup> Zhenwei Ren,<sup>a</sup> Qing Shen,<sup>cd</sup> and Xinhua Zhong<sup>\*ab</sup>

<sup>a</sup>Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering East China University of Science and Technology, Shanghai 200237, China

<sup>b</sup>College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China

<sup>c</sup>Department of Engineering Science, University of Electro-Communications, Tokyo 182-8585, Japan

<sup>d</sup>Japan Science and Technology Agency (JST), Saitama 332-0012, Japan

<sup>\*</sup>Corresponding authors

Email: zxpan@scau.edu.cn (Z. P.); zhongxh@ecust.edu.cn (X. Z.)

| Nomina | l reacta   | nt molar | r ratio        | Chemical composition                   | Measured molar |
|--------|------------|----------|----------------|----------------------------------------|----------------|
| Cu     | determined |          | ratio of Cu/In |                                        |                |
| Cu     | III        | 56       | Zn             | By ICP-AES                             | By ICP-AES     |
| 0.5    | 1          | 3        | 0.4            | $Cu_{0.72}In_{1.30}Zn_{0.14}Se_{2.79}$ | 0.55           |
| 0.7    | 1          | 3        | 0.4            | $Cu_{1.01}In_{1.48}Zn_{0.11}Se_{3.04}$ | 0.68           |
| 1.0    | 1          | 3        | 0.4            | $Cu_{1.34}In_{1.45}Zn_{0.13}Se_{3.12}$ | 0.92           |

**Table S1** The nominal reactant ratio and chemical compositions of ZCISe QDs obtained fromICP-AES.

 Table S2 The values of energy level of ZCISe QDs with different Cu/In molar ratios

 reckoned according to the UPS and UV measurements.

| Cu/In       | First <i>E</i> <sub>cutoff</sub> | Secondary E <sub>cutoff</sub> | $E_{ m g}$ | $E_{\mathrm{F}}$ | $E_{ m V}$ | E <sub>C</sub> |
|-------------|----------------------------------|-------------------------------|------------|------------------|------------|----------------|
| molar ratio | (eV)                             | (eV)                          | (eV)       | (eV)             | (eV)       | (eV)           |
| 0.5         | 1.42                             | 17.44                         | 1.67       | -3.78            | -5.20      | -3.53          |
| 0.7         | 0.96                             | 17.36                         | 1.63       | -3.86            | -4.82      | -3.19          |
| 1.0         | 1.36                             | 17.83                         | 1.58       | -3.39            | -4.75      | -3.17          |



Fig. S1 The UPS spectrum of ZCISe QDs with different Cu/In molar ratios. (a) Cu/In=0.5; (b) Cu/In=0.7; (c) Cu/In=1.0; (d) Obtained energy level diagram of  $TiO_2$  and corresponding ZCISe QDs.

| Cu/In<br>molar ratio | $J_{\rm sc}$ (mA·cm <sup>-2</sup> ) | V <sub>oc</sub> (V) | FF                | PCE (%)           |
|----------------------|-------------------------------------|---------------------|-------------------|-------------------|
|                      | 23.89                               | 0.606               | 0.574             | 8.31              |
|                      | 23.88                               | 0.612               | 0.570             | 8.32              |
| 0.5                  | 23.91                               | 0.607               | 0.570             | 8.28              |
|                      | 23.88                               | 0.609               | 0.570             | 8.30              |
|                      | 23.82                               | 0.613               | 0.568             | 8.29              |
| Average              | 23.87±0.03                          | $0.609 \pm 0.003$   | $0.570 \pm 0.002$ | 8.30±0.016        |
|                      | 25.24                               | 0.600               | 0.582             | 8.81              |
|                      | 25.18                               | 0.602               | 0.580             | 8.79              |
| 0.6                  | 25.20                               | 0.590               | 0.579             | 8.61              |
|                      | 25.21                               | 0.597               | 0.582             | 8.76              |
|                      | 25.17                               | 0.596               | 0.585             | 8.78              |
| Average              | 25.20±0.03                          | $0.597{\pm}0.004$   | $0.581 \pm 0.002$ | $8.75 \pm 0.08$   |
|                      | 25.88                               | 0.603               | 0.602             | 9.39              |
|                      | 26.01                               | 0.597               | 0.592             | 9.21              |
| 0.7                  | 25.93                               | 0.604               | 0.595             | 9.32              |
|                      | 25.98                               | 0.602               | 0.590             | 9.23              |
|                      | 25.82                               | 0.602               | 0.594             | 9.23              |
| Average              | $25.92 \pm 0.08$                    | $0.602 \pm 0.003$   | $0.595 \pm 0.004$ | 9.28±0.08         |
|                      | 25.51                               | 0.605               | 0.582             | 8.98              |
|                      | 25.62                               | 0.601               | 0.587             | 9.04              |
| 0.8                  | 25.56                               | 0.597               | 0.592             | 9.03              |
|                      | 25.54                               | 0.592               | 0.591             | 8.94              |
|                      | 25.58                               | 0.600               | 0.590             | 9.06              |
| Average              | 25.56±0.04                          | $0.600 \pm 0.005$   | $0.588 \pm 0.004$ | $8.98 {\pm} 0.05$ |
|                      | 24.82                               | 0.595               | 0.573             | 8.47              |
|                      | 24.77                               | 0.594               | 0.575             | 8.46              |
| 1.0                  | 24.65                               | 0.595               | 0.571             | 8.40              |
|                      | 24.80                               | 0.594               | 0.573             | 8.44              |
|                      | 24.86                               | 0.594               | 0.570             | 8.42              |
| Average              | 24.78±0.08                          | $0.594{\pm}0.001$   | $0.572 \pm 0.002$ | $8.44 \pm 0.028$  |
|                      | 25.80                               | 0.746               | 0.638             | 12.28             |
|                      | 25.83                               | 0.738               | 0.650             | 12.39             |
| 0.7/MC-Ti            | 26.08                               | 0.741               | 0.639             | 12.35             |
|                      | 25.97                               | 0.752               | 0.644             | 12.57             |
|                      | 25.95                               | 0.749               | 0.641             | 12.46             |
| Average              | 25.93±0.11                          | $0.745 {\pm} 0.006$ | $0.642 \pm 0.005$ | $12.41 \pm 0.11$  |

**Table S3** Individual photovoltaic parameters of ZCISe based QDSCs with different Cu/In molar ratios under the illumination of 1 full sun intensity (AM 1.5G, 100mW/cm<sup>2</sup>).



**Fig. S2** Individual *J*–*V* curves of ZCISe based QDSCs with different Cu/In molar ratios under the illumination of 1 full sun intensity (AM 1.5G, 100 mW/cm<sup>2</sup>). (a) Cu/In=0.5, (b) Cu/In=0.6, (c) Cu/In=0.7, (d) Cu/In=0.8, (e) Cu/In=1.0, (f) Cu/In=0.7 with MC-Ti as counter electrode.

**Table S4** Impedance parameters under the forward bias of -0.6 V: series resistance  $R_{s}$ , counter electrode charge transfer resistance  $R_{CE}$ , recombination resistance  $R_{rec}$ , chemical capacitance  $C_{\mu}$ , and electron lifetime  $\tau_n$  ( $\tau_n = R_{rec} \cdot C_{\mu}$ ).

| Cu/In<br>molar ratio | $R_s$<br>$\Omega \cdot \mathrm{cm}^2$ | $R_{CE}$<br>$\Omega \cdot \mathrm{cm}^2$ | $R_{rec}$<br>$\Omega \cdot \mathrm{cm}^2$ | C <sub>μ</sub><br>mF • cm <sup>-2</sup> | $	au_n$ ms |
|----------------------|---------------------------------------|------------------------------------------|-------------------------------------------|-----------------------------------------|------------|
| 0.5                  | 8.558                                 | 2.93                                     | 301.4                                     | 5.54                                    | 1669       |
| 0.7                  | 10.75                                 | 6.14                                     | 318.0                                     | 5.70                                    | 1812       |
| 1.0                  | 12.94                                 | 4.91                                     | 244.7                                     | 5.86                                    | 1434       |



**Fig. S3** Nyquist curves under different bias voltages for ZCISe QDSCs with different Cu/In molar ratios (0.5, 0.7, and 1.0).