Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Amorphous NiFe(oxy)hydroxide Nanosheets Integrated Partially Exfoliated

Graphite Foil for High Efficiency Oxygen Evolution Reaction

Yin-Jian Ye,^a Ning Zhang^b and Xiao-Xia Liu*^a

^a Department of Chemistry, Northeastern University, Shenyang, 110819, China

^b Institute of Advance Material Technology, Northeastern University, Shenyang, 110819, China.

*Corresponding author: Xiao-Xia Liu, xxliu@mail.neu.edu.cn

List of supporting tables

Table S1. Comparison of the electrocatalytic performance of the NiFe/EG catalyst present in this work with some representative Ni-Fe bimetallic OER catalysts reported recently.

	Electrolyte	Current density (<i>i</i>) (mA cm ⁻²)	η (mv) at correspon -ding <i>i</i>	Tafel slope (mv/dec)	Duration time (h)	Ref.
NiFe/EG	1 M KOH	10 500	214 251	21.2	100 48	This work
	0.1 M KOH	10	248	31.0	_	
NiFe/NF	1 M KOH 10 M KOH	100 500	370 240	28	10 2	[31]
NiFe/NiCo ₂ O ₄ / NF	1 M KOH	50	310	38.8	11	[32]
Ni-Fe- OH@Ni ₃ S ₂ /NF	1 M KOH	10 500	165 530	93	50	[33]
Ni ₅₀ Fe ₅₀ -DAT/ NF	1 M NaOH	100	300	_	72	[34]
NiFe-C/NF	1 M KOH	60	275	30	100	[35]
NiFe- LDH/MWCNT	1 М КОН	40	240	33.3	24	[38]
NiFe- LDH/CoossSe/EG	1 М КОН	200	270	57	10	[40]
NiFe-LDH/NF	1 М КОН	10	224	52.8	50	[42]
$Ni_{0.71}Fe_{0.29}(OH)_x/$ graphite	0.1 M KOH	10	296	58	24	[27]
Ni-Fe LDH/3D- ErGO	1 М КОН	10	259	39	2	[51]
porous Ni-Fe	0.1 M KOH	10	328	42	12	[15]
NiFe-LDH/CQD	1 М КОН	10	235	30	0.83	[17]
NiFe-LDH/CNT	1 М КОН	10	~250	31	0.28	[18]
Ni _{2/3} Fe _{1/3} -LDH/ rGO	1 M KOH	10	210	40	10	[19]
NiFe-LDH/GO	1 M KOH	10	210	39	1.3	[20]
NiFe-LDH/ N- Graphene	0.1 M KOH	10	337	45	3	[21]

Sample	Electrolyte	Current density (i) (mA cm ⁻²)	η (mv) at correspon- ding <i>i</i>	Tafel slope (mv/dec)	Ref.
Ir/C on GCE ¹	0.1 M KOH	10	410	54	[21]
Ir/C on Ni foam	1 M KOH	10	490	145	[42]
IrO ₂ on GCE ¹	1 M KOH	10	370	64	[12]
IrO ₂ on RDE ²	1 M KOH	10	470	61	[51]
IrO ₂ on RDE ²	1 M KOH	10	360	42.8	[38]
IrO ₂ on Ni foam	1 M KOH	10	290	78.5	[9]
IrO ₂ on Ni foam	1 M KOH	355	570		[33]
RuO ₂ on graphite	0.1 M KOH	10	350	61	[27]
RuO ₂ on graphite	0.1 M KOH	10	497	86	[28]
RuO ₂ on GCE ¹	1 M KOH	10	320	54.4	This work
NiFe/EG	1 M KOH	10	214	21.2	This work
	0.1 M KOH	10	248	31.0	

Table S2. Comparison of the electrocatalytic performance of the NiFe/EG catalyst reported in this noble work with OER catalysts reported recently. comercial metal based

¹GCE (Glassy Carbon Electrode) ²RDE (Ring Disk Electrode)

Table S3. Ni:Fe atomic ratios

sample	Ni:Fe precursor ratio in electrolyte	Ni:Fe ratio in NiFe/EG-1.2V electrode
NiFe8:1/EG-1.2V	8:1	89.7:10.3
NiFe4:1/EG-1.2V	4:1	83.3:16.7
NiFe2:1/EG-1.2V	2:1	75.4:24.6
NiFe1:1/EG-1.2V	1:1	44.3:55.7

List of supporting figures

Figure S1. Confocal laser scanning microscope images of EG (A: a-e) and G (B: a-e) together with the heights along the y direction in different positions as labelled in a-e (f).

Figure S2. Cyclic voltammograms (CV) during the electrodeposition of NiFe(oxy)hydroxide species on EG substrate.

Reactions involved:

$$R_{A}: NO_{3}^{-} + 7H_{2}O + 8e^{-} \rightarrow NH_{4}^{+} + 10OH^{-}$$
 (1)

$$x\mathrm{Ni}^{2+} + y\mathrm{Fe}^{3+} + (2x+y)\mathrm{OH}^{-} \to \mathrm{Ni}_{x}\mathrm{Fe}_{y}\mathrm{OH}_{(2x+3y)}$$
(2)

$$O_B/R_B$$
: Ni(OH)₂(s) \leftrightarrow NiOOH(s) + H⁺ + e⁻ (3)

$$O_{\rm C}/R_{\rm C}$$
: Ni²⁺(aq) + 2H₂O \leftrightarrow NiOOH(s) + 3H⁺ + e⁻ (4)

Figure S3. Photographs of the as-prepared (a) EG and (b) NiFe2:1/EG-1.2V electrodes.

Figure S4. SEM image (a) of NiFe2:1/EG-1.2V and corresponding EDS mapping images for Ni (b), Fe (c), O (d) and C (e).

Figure S5. (a) XPS survey spectra of EG (black) and NiFe2:1/EG-1.2V electrode (red). (b) Detailed fits of the C 1s of EG.

Figure S6. CV curves of the NiFe/EG-1.2V electrodes prepared from the mixed nitrate precursors with different Ni/Fe ratios (1:0, 8:1, 4:1, 2:1, 1:1, 0:1)

Figure S7. (a) *iR*-corrected LSV curves of NiFe/EG-1.2V electrode in KOH solutions with different concentrations and (b) the corresponding Tafel plots of overpotential versus log (*i*) derived from (a)

Figure S8. CV curves of the NiFe2:1/EG electrodes prepared from potential dynamic scans between - 1.2 V vs. SCE and different upper potential cutoffs (0 V, 0.8 V, 1.0 V, 1.2 V, 1.4 V).

Figure S9. SEM images of (a) Ni/EG-1.2V, (b) NiFe8:1/EG-1.2V, (c) NiFe4:1/EG-1.2V, (d) NiFe2:1/EG-1.2V, (e) NiFe1:1/EG-1.2V and (f) Fe/EG-1.2V electrodes.

Figure S10. CV curves of (a1) Ni/EG-1.2V, (b1) NiFe8:1/EG-1.2V, (c1) NiFe4:1/EG-1.2V, (d1) NiFe2:1/EG-1.2V, (e1) NiFe1:1/EG-1.2V and (f1) Fe/EG-1.2V electrodes measured in the non-Faradaic region at the following scan rates: 10 mV s⁻¹ (black line), 25 mV s⁻¹ (red line), 50 mV s⁻¹ (blue line), 100 mV s⁻¹ (green line), 200 mV s⁻¹ (pink line); (a2)-(f2) The linear relationship of current densities at 0.924 V vs. RHE with scan rates allows to estimate the double layer capacitance (C_{dl}), which directly related to EASA, from the slope.

Figure S11. SEM images of (a) NiFe2:1/EG-0V, (b) NiFe2:1/EG-0.8V, (c) NiFe2:1/EG-1.0V and (d) NiFe2:1/EG-1.4V electrodes.

Figure S12. CV curves of (a1) NiFe2:1/EG-0V, (b1) NiFe2:1/EG-0.8V, (c1) NiFe2:1/EG-1.0V and (d1) NiFe2:1/EG-1.4V electrodes measured in the non-Faradaic region at the following scan rates: 10 mV s⁻¹ (black line), 25 mV s⁻¹ (red line), 50 mV s⁻¹ (blue line), 100 mV s⁻¹ (green line), 200 mV s⁻¹ (pink line); (a2)-(d2) The linear relationship of current densities at 0.924 V vs. RHE with scan rates allows to estimate the double layer capacitance (C_{dl}), which directly relates to EASA, from the slope.

Figure S13. SEM images of the NiFe2:1/G-1.2V electrode.

Figure S14. (a) Plots of current densities at 0.924 V vs. RHE with various scan rates in CV curves in the non-Faradaic region of NiFe2:1/G-1.2V, NiFe2:1/EG-1.2V and NiFe2:1/EGR-1.2V electrodes for the estimation of double layer capacitance (C_{dl}). (b) Nyquist plots of the NiFe2:1/G-1.2V, NiFe2:1/EG-1.2V and NiFe2:1/EGR-1.2V electrodes conducted in a frequency range of 10 mHz to 20 kHz at potential of 1.504 V vs. RHE. (c) Nyquist plots of EG and the NiFe2:1/EG-1.2V electrode conducted in a frequency range of 10 mHz to 20 kHz at potential of 1.504 V vs. RHE.

Figure S15. SEM images of GR (a), EGR (b and c) and NiFe2:1/EGR-1.2V (d).

Figure S16. (a) The *iR*-corrected LSV curves of NiFe2:1/EG-1.2V, NiFe2:1/EGR-1.2V and NiFe2:1/G-1.2V electrodes. (b) Tafel plots of overpotential versus log (*i*) derived from (a).