Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Figure S1. SEM images of B-MnP52 exhibiting its irregular morphology.

Figure S2. Enlarged view of the mesostructure of M-MnP52.

Figure S3. Elemental mapping (a) with EDX spectrum (b) of M-MnP52.

Figure S4. (a–c) TEM images and (d) SAED pattern of B-MnP52, showing non-porous structure with an amorphous framework.

Figure S5. N₂ adsorption-desorption isotherms of M-MnP52 and B-MnP52. Pore size distribution curve of M-MnP52 is shown as an inset.

Figure S6. XPS spectra of M-MnP52 and B-MnP52: (a) survey spectra; (b) Mn 2p spectra; and (c) P 2p spectra. The satellite peaks are indicated by *.

Figure S7. Proposed connection mode between phosphonic linkages and manganese moieties for M-MnP52.

Figure S8. Low-angle XRD patterns of MnP samples prepared under different synthetic conditions: (a) Mn/P ratios of 1:2 to 4:2 at pH ~ 7, with aging time of 36 h; (b) Mn/P ratio of 1:2 at different pH, with aging time of 36 h; and (c) Mn/P ratio of 1:2 at pH ~ 10, with aging time of 36 and 48 h.

Figure S9. (a) Low-angle and (b) wide-angle XRD patterns of *as-pre* M-MnP12 and M-MnP12.

Figure S10. TEM images of M-MnP12 showing clearly visible mesostructure.

Figure S11. FT-IR spectra of (a) MnP samples (*as-pre* M-MnP12, M-MnP12) and (b) free phosphonic acid (HEDP).

Figure S12. Proposed connection mode between phosphonic linkages and manganese moieties for M-MnP12.

Figure S13. TGA curves of *as-pre* M-MnP12 and M-MnP12.

Figure S14. The galvanostatic discharge curves of (a) M-MnP52 and (b) B-MnP52 at various current densities, and (c) their cycling stability.

	Sample	Potential window (V)	Electrolyte	Scan rate (mV s ⁻¹)	Current density (mA cm ⁻²)	Capacitance (F g ⁻¹)	Retention ^a (%)	Retention calculation range (A g ⁻¹)	Ref.	
	NaMnPO ₄	-0.6 - 0.4	1 M NaOH	2	-	219	46	2-10	R1	
	M-MnP52	-0.3 - 0.5	3 М КОН	5	-	269	67.5	2-10	This work	
	NaMnPO ₄	-0.6 - 0.4	1 M NaOH	-	2	163	-	-	R1	
	M-MnP52	-0.3 - 0.5	3 М КОН	-	2	243	-	-	This work	
	Mn ₃ (PO ₄) ₂ / graphene composite	0.0-0.4 V	6 М КОН	-	0.5	270	-	-	R2	
	M-MnP52	-0.3 - 0.5	3 М КОН	-	0.5	299	-	-	This work	
	$Mn_3(PO_4)_2$ nanosheets	-0.3 - 0.5	2 М КОН	-	-	-	40-44.5	0.5-5	R3	
	M-MnP52	-0.3 - 0.5	3 М КОН	-	-	-	60.5	0.5-6	This work	

Table S1 Comparison of capacitive performance with previously reported phosphate materials.

^{*a*} The retention is calculated by changing the applied current density (A g⁻¹).

References

R1 B. Senthilkumar, K. V. Sankar, L. Vasylechko, Y. S. Lee, R. K Selvan, RSC Adv. 2014, 4, 53192-53200.

R2 A. M. Abdulmajid, J. M. Moshawe, M. M. Tshifhiwa, O. O. Kabir, B. Abdulhakeem, M. Ncholu, J. *Colloid Interface Sci.* 2017, 494, 325-337.

R3 Y. H. Dai, L. B. Kong, K. Yuan, M. Shi, Y. C. Luo, L. Kang, Ionics, 2016, 22, 1461-1469.