Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Information for

A Novel High-Performance Electrode Architecture for

Supercapacitors: Fe₂O₃ Nanocubes and Carbon nanotubes

Functionalized Carbon

Rui Wang,^a Shichang Cai,^a Yizhi Yan,^a William M. Yourey^{b,c}, Wei Tong^{b*}, Haolin Tang^{a*}

^aState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan

University of Technology, Wuhan 430070, P. R. China

^bEnergy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory,

Berkeley, CA 94720 USA

^cCollege of Engineering, Penn State University, Hazleton, PA 18202 USA

*Corresponding authors: thln@whut.edu.cn, weitong@lbl.gov

Figure S1 Optical photographs of (a) full-size pristine sponge sample, and (b) half-size sample after heat-treatment.

Figure S2 (a) Representative TEM image, and (b) high-resolution TEM image of FNCs/CNTs-C sample.

Figure S3 (a) CV curves at various scan rates (10 - 100 mV/s), (b) galvanostatic charge - discharge curves at various current densities (2 - 20 mA/cm²) for FNCs/CNTs-C.

Figure S4 EIS spectra of the FNCs/CNTs-C before and after 20,000 cycles.

Figure S5 SEM images of cycled FNCs/CNTs-C electrode at varied magnifications. Electrode was cycled for 20,000 times at a scan rate of 100 mV/s.

Figure S6 (a) Volumetric capacitance, (b) cycling performance of FNCs/CNTs-C electrodes synthesized at different temperatures.

 Table S1 Elemental content of FNCs/CNTs-C sample (atomic %) detected by XPS.

Element	С	0	Ν	Fe
Atomic %	86.34	7.84	5.46	0.36

Electrodes Areal capacitance (mF cm ⁻²)		tance (mF cm ⁻²)	Cycling Performance	
FNCs/CNTs-C	1424 at 10 mV s ⁻¹	1687 at 2 mA cm ⁻²	95.8% retention after 20000 cycles	This
Fe ₂ O ₃ @PANI	~48 at 10 mV s ⁻¹	103 at 0.5 mA cm ⁻²	100% retention after 2500 cycles	1
Fe ₂ O ₃ NTs	-	180.4 at 1 mA cm ⁻²	-	2
N- Fe ₂ O ₃	277.3 at 10 mV s ⁻	382.7 at 0.5 mA cm ⁻	95.2% retention after 10000 cycles	3
Graphene/Fe ₂ O ₃	-	-	75% retention after 200 cycles	4
Fe ₂ O ₃ -graphene	-	-	86% retention after 1000 cycles	5
₽- Fe ₂ O ₃ /rGO	~ 189 at 10 mV s ⁻¹	386.80 at 2 mA cm ⁻²	75% retention after 1000 cycles	6
Fe ₂ O ₃ NP cluster/rGO	178.3 at 1 mV s ⁻¹	-	83.1% retention after 10000 cycles	7
FeOOH/40G	-	-	89.7% retention after 20000 cycles	8
Activated- Fe ₂ O ₃ @C	-	-	90.6% retention after 10000 cycles	9
Fe ₂ O ₃ /RGO/Fe ₃ O ₄ @Fe	. –	337.5 at 20 mA cm ⁻²	95% retention after 5000 cycles	10
GF-CNT@400Fe ₂ O ₃	-	470.5 at 20 mA cm ⁻²	111.2% retention after 50000	11
Ti-Fe ₂ O ₃ @PEDOT	395.6 at 10 mV s ⁻	1150 at 1 mA cm ⁻²	96.1% retention after 30000 cycles	12

Table S2 Comparison of the electrochemical ne	erformance of FNCs/CNTs-C with that	reported for Ee_2O_2 and Ee_2O_2/C electrodes
Tuble 52 companison of the electrochemical pe		

References

- 1. X.-F. Lu, X.-Y. Chen, W. Zhou, Y.-X. Tong and G.-R. Li, *ACS Appl. Mater.* & *Interfaces*, 2015, **7**, 14843-14850.
- 2. P. Yang, Y. Ding, Z. Lin, Z. Chen, Y. Li, P. Qiang, M. Ebrahimi, W. Mai, C. P. Wong and Z. L. Wang, *Nano Lett.s*, 2014, **14**, 731-736.
- 3. X. Lu, Y. Zeng, M. Yu, T. Zhai, C. Liang, S. Xie, M.-S. Balogun and Y. Tong, *Adv. Mater.*, 2014, **26**, 3148-3155.
- 4. H. Wang, Z. Xu, H. Yi, H. Wei, Z. Guo and X. Wang, *Nano Energy*, 2014, **7**, 86-96.
- 5. D. Wang, Y. Li, Q. Wang and T. Wang, *J Solid State Electrochem.*, 2012, **16**, 2095-2102.
- 6. M. Aadil, W. Shaheen, M. F. Warsi, M. Shahid, M. A. Khan, Z. Ali, S. Haider and I. Shakir, *J. Alloy. Compd.*, 2016, **689**, 648-654.
- Y. T. Hu, C. Guan, Q. Q. Ke, Z. F. Yow, C. W. Cheng and J. Wang, *Chem. Mater.*, 2016, 28, 7296-7303.
- 8. J. Q. Liu, M. B. Zheng, X. Q. Shi, H. B. Zeng and H. Xia, *Adv. Funct. Mater.*, 2016, **26**, 919-930.
- 9. Y. P. Ye, H. Y. Zhang, Y. M. Chen, P. Deng, Z. K. Huang, L. Y. Liu, Y. N. Qian, Y. Y. Li and Q. Y. Li, *J. Alloy. Compd.*, 2015, **639**, 422-427.
- 10. C. Zhao, X. Shao, Y. Zhang and X. Qian, ACS Appl. Mater. Interfaces, 2016, **8**, 30133-30142.
- C. Guan, J. L. Liu, Y. D. Wang, L. Mao, Z. X. Fan, Z. X. Shen, H. Zhang and J. Wang, ACS Nano, 2015, 9, 5198-5207.
- 12. Y. Zeng, Y. Han, Y. Zhao, Y. Zeng, M. Yu, Y. Liu, H. Tang, Y. Tong and X. Lu, *Adv. Energy Mater.*, 2015, **5**, 1402176.