Supporting information

Rice Husk-Derived Hybrid Lithium-Ion Capacitors with Ultra-High

Energy

Bo Li,^a Zhujun Xiao,^a Ming Chen,^a Ziyue Huang,^b Xiaoyong Tie,^c Jiantao Zai, *a and

Xuefeng Qian*a

- a. School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 (P. R. China)
- b. Shanghai Qibao High School, Shanghai, 2001101, P. R. China
- c. Hubei Land Resources Vocational College, Wuhan, 430090, P. R. China

Keywords: Rice husk, Silicon anode, hierarchical porous carbon, lithium-ion capacitors

Fig. S1. Schematic showing the microstructure of husks.

Fig. S2. SEM of RHs-derived SiO₂.

Fig. S3. TGA curve of Si/C.

Fig. S4. The first charge and discharge profiles of Si/C.

Fig. S5. SEM image of RAC-5.

Element	Without HCl treatment	HCl treatment		
Fe	0.418	0.082		
Mn	0.067	0.003		
Na	0.285	0.112		
K	0.437	0.178		
Ga.	1.095	0.325		

Contents of metallic ingredients in wt% for RAC with and without HCl treatment

Fig. S6. Cycling performance of RAC material without HCl treatment.

Fig. S7. CV curves at different scan rates of Si/C||RAC-5 LICs.

Fig. S8. The energy density and power density of LICs calculated by mass weight of active materials, conductive agents, and binders.

Table S2. Calculated energy density and power density of LICs by the mass weight of active materials, conductive agents, and binders.

Power density (W kg ⁻¹)	890	1722	3407	7086	13125	25265
Energy density (Wh kg ⁻¹)	174	168	162	156	147	131