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1. TGA curve of the ZnFe2O4/C spindles. 

100 200 300 400 500 600
60

70

80

90

100

71.7%

3.0%

W
ei

gh
t 

lo
ss

 / 
%

Temperature / oC

25.3%

 

Figure S1. TGA curve of the ZnFe2O4/C spindles. 

 

The weight loss below 150oC could be ascribed to the removal of the physically 

adsorbed water. The weight loss at 240-410oC would be attributed to the removal of the 

carbon framework. Based on the TGA, it could be inferred that the ZnFe2O4/C spindles 

contain 3.0 wt.% of the physically adsorbed water, 25.3wt.% of carbon, and 71.7 wt. % of 

ZnFe2O4.  
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2. Comparison of the XRD pattern of the ZnFe2O4/C spindles with those of the standard 

ZnFe2O4, Fe3O4 and ZnO.   
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Figure S2. Comparison of the XRD pattern of the ZnFe2O4/C spindles with those of the 

standard ZnFe2O4, Fe3O4 and ZnO.   

 
The XRD pattern clearly shows that the diffraction peaks of the ZnFe2O4/spindles better 

match with those of the the cubic spinel ZnFe2O4 (JCPDS card no. 89-1010). Although the 

spinel structured Fe3O4 has a diffraction pattern similar to ZnFe2O4, its diffraction peaks do 

not match well with the ZnFe2O4/spindles. Additionally, the diffraction pattern also indicates 

the absence of the ZnO phase in the ZnFe2O4/C spindles. As shown in the Figure S2, there are 

no diffraction peaks assignable to Wurtzite and/or Zinc blende structured ZnO in the XRD 

pattern of the ZnFe2O4/spindles. This, along with the uniform distribution of Zn, Fe and O in 

the ZnFe2O4/C spindles, as demonstrated in the elemental mapping image shown in Figure 2a, 

strongly suggest that Zn and Fe exist in the form of ZnFe2O4.   
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3. Elemental mapping of Zn, Fe, O, and C in the ZnFe2O4/C spindles. 

 
Figure S3. Elemental mapping of Zn, Fe, O, and C in the ZnFe2O4/C spindles. 

 

4. XPS survey spectra of the ZnFe2O4/C, MnFe2O4/C, CoFe2O4/C, and NiFe2O4/C 

spindles.  
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Figure S4. XPS survey spectra of the ZnFe2O4/C, MnFe2O4/C, CoFe2O4/C, and NiFe2O4/C 

spindles.  
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5. XRD diffraction patterns of the MnFe2O4/C, CoFe2O4/C, and NiFe2O4/C spindles. 
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Figure S5. XRD diffraction patterns of the MnFe2O4/C, CoFe2O4/C, and NiFe2O4/C spindles.  
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6. XPS spectra of Mn 2p, Co 2p, Ni 2p, Fe 2p, O 1s, and  C 1s for the MnFe2O4/C, 

CoFe2O4/C, and NiFe2O4/C spindles.  

 

 
Figure S6. XPS spectra of (a) Mn 2p, (b) Fe 2p, (c) O 1s, and (d) C 1s for the MnFe2O4/C 

spindles.  
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Figure S7. XPS spectra of (a) Co 2p, (b) Fe 2p, (c) O 1s, and (d) C 1s for the CoFe2O4/C 

spindles.  
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Figure S8. XPS spectra of (a) Ni 2p, (b) Fe 2p, (c) O 1s, and (d) C 1s for the NiFe2O4/C 

spindles. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



     

S10 
 

 

7. N2 adsorption/desorption isotherms of the MFe2O4/C ((M= Zn, Mn, Co, Ni)) spindles.  

 
Figure S9. N2 adsorption/desorption isotherms of the MFe2O4/C ((M= Zn, Mn, Co, Ni)) 

spindles. The specific surface areas of the samples were calculated using the 

Brunauer−Emmett−Teller (BET) method.  
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8. Reaction Schemes for the MFe2O4/C(M=Zn, Mn, Co, Ni) spindles as the anode for 

LIBs. 

 

 

 

Scheme S1. Reactions associated with the discharge/charge processes of the ZnFe2O4/C 

spindles1 

 

 

 

 

Scheme S2. Reactions associated with the discharge/charge processes of the MFe2O4/C (M= 

Mn, Co, Ni) spindles2 
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9. Charge/discharge capacities of the carbon spindles at the current rates of 0.4 and 1.6 

C. 
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Figure S10. Charge/discharge capacities of the carbon spindles at the current rates of 0.4 and 

1.6 C. 
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10. Comparison of the stable reversible capacity of the ZnFe2O4/C spindles with other 

ZnFe2O4 based anodes and Comparison of the stable reversible capacity of the 

MFe2O4/C(M=Mn, Co, Ni) spindles with other MFe2O4 (M=Mn, Co, Ni) based anodes. 

 
Table S1. Comparison of the stable reversible capacity of the ZnFe2O4/C spindles with other 

ZnFe2O4 based anodes. 

Materials 

Mass 
loading 
of each 

electrode/ 
mg cm-2 

Current 
rate 

/ mA g-1 

Capacity 
/ mA h g-1 

Number 
of cycles 

Ref. 

ZnFe2O4/graphene 
(ZnFe2O4/G) 

- 200 600 5 3 

Hierarchical Porous 
Acetylene Black/ 
ZnFe2O4@Carbon 

(AB/ZnFe2O4@Carbon) 

1.2~1.7 100 803 150 4 

Porous hierarchical 
Nitrogen-doped carbon 

ZnFe2O4 

(ZnFe2O4/NC) 

1.6 100 809 50 5 

ZnFe2O4 nanooctahedrons 
(ZnFe2O4 Oh) 

- 60 910 80 6 

Core-shell ZnO/ZnFe2O4@C 
mesoporous nanospheres 

(ZnO/ZnFe2O4@C ) 
- 500 893 60 7 

Hierarchical Mesoporous 
Bi-Component-Active 

ZnO/ZnFe2O4 Sub-
Microcubes 

(Bi-ZnO/ZnFe2O4) 

0.9 mg 
per 

Cu foil 
200 950 

An 
average 

of 10 
discharge 
capacities 

8 

3D mesoporous ZnFe2O4-
graphene composites 

(3D ZnFe2O4/G) 
- 500 970 200 9 

Hierarchical Shuttle-Shaped 
Mesoporous ZnFe2O4 

Microrods 
(ZnFe2O4 MR) 

~1.4 mg 
per anode

100 896 50 10 

ZnFe2O4-C nanocomposite 
(ZnFe2O4/C) 

1.5~1.7 71 681 100 11 

ZnFe2O4-nanocrystal-
assembled microcages 

(ZnFe2O4 cages) 
- 100 840 100 

12 
 

ultrafine ZnFe2O4 
nanocrystals anchored on 

graphene 
(ZnFe2O4 nc/G) 

- 50 822 36 13 

ZnFe2O4@C/graphene  232 712.5 50 14 
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nanocomposites 
(ZnFe2O4@C/G ) 

Mesoporous ZnFe2O4 

nanorods 
(ZnFe2O4 NR) 

0.7 100 983 50 15 

ZnFe2O4 Cubes - 60 367 50 16 

ZnFe2O4/C spindles 1.0 200 950 70 
This 
work 

 
 

Table S2. Comparison of the stable reversible capacity of the MFe2O4/C(M=Mn, Co, Ni) 

spindles with other MFe2O4 (M=Mn, Co, Ni) based anodes. 

Materials 

Mass 
loading of 

each 
electrode/ 
mg cm-2 

Current 
rate 

/ mA g-1 

Capacity 
/ mA h g-1 

Number 
of cycles 

Ref. 

Mesoporous MnFe2O4 
microspheres 

- 185.6 712 50 17 

Core–Shell 
NiFe2O4@TiO2 

Nanorods 
- 100 756 60 18 

MnFe2O4/graphene 
~2 mg per 

anode 
400 706 100 19 

MnFe2O4 nanoparticles 
dispersed on graphene 

- 200 904 40 20 

MnFe2O4/graphene 
composites 

- 200 684 80 21 

Carbon-coated 
MnFe2O4 nanoparticle 
hollow microspheres 

1.8 200 1024 60 22 

Hierarchical 
NiFe2O4/Fe2O3 

nanotubes 

1.0~1.2 
mg per 
anode 

100 936.9 100 23 

NiFe2O4/C composite - 200 600 50 24 
Electrospun 

NiFe2O4@C fibers 
1.0~1.5 100 497 100 25 

Ultrathin NiO/NiFe2O4 
Nanoplates 

2.5 100 700 30 26 

Co3O4/CoFe2O4 
Nanocomposite 

- 64 756.5 25 27 

CoFe2O4/carbon 
nanotube aerogels 

~0.60 100 1033 60 28 

CoFe2O4/C composite 
fiber 

- 100 710 40 29 

CoFe2O4 quantum 
dots/N-doped graphene 

composite 

1.0~1.1 
mg per 
anode 

100 838 50 30 

C@CoFe2O4 fiber-in- 0.7~1.0 200 740 200 31 
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tube mesoporous 
nanostructure 

mg per 
anode 

MnFe2O4/C spindles 1.0 200 879 80 This work 
CoFe2O4/C spindles 1.0 200 787 80 This work 
NiFe2O4/C spindles 1.0 200 962 80 This work 
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