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1. TGA curve of the ZnFe,04/C spindles.
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Figure S1. TGA curve of the ZnFe,04/C spindles.

The weight loss below 150°C could be ascribed to the removal of the physically
adsorbed water. The weight loss at 240-410°C would be attributed to the removal of the
carbon framework. Based on the TGA, it could be inferred that the ZnFe,O4/C spindles
contain 3.0 wt.% of the physically adsorbed water, 25.3wt.% of carbon, and 71.7 wt. % of
ZnFe,Oq.
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2. Comparison of the XRD pattern of the ZnFe,04/C spindles with those of the standard
ZnFe;04, Fe;04 and ZnO.
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Figure S2. Comparison of the XRD pattern of the ZnFe,O4/C spindles with those of the
standard ZnFe,O,4, Fe;04 and ZnO.

The XRD pattern clearly shows that the diffraction peaks of the ZnFe,O4/spindles better
match with those of the the cubic spinel ZnFe,O4 (JCPDS card no. 8§9-1010). Although the
spinel structured Fe;O4 has a diffraction pattern similar to ZnFe,Os, its diffraction peaks do
not match well with the ZnFe,O4/spindles. Additionally, the diffraction pattern also indicates
the absence of the ZnO phase in the ZnFe,04/C spindles. As shown in the Figure S2, there are
no diffraction peaks assignable to Wurtzite and/or Zinc blende structured ZnO in the XRD
pattern of the ZnFe,O4/spindles. This, along with the uniform distribution of Zn, Fe and O in
the ZnFe,0./C spindles, as demonstrated in the elemental mapping image shown in Figure 2a,

strongly suggest that Zn and Fe exist in the form of ZnFe;Oy.
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3. Elemental mapping of Zn, Fe, O, and C in the ZnFe,04/C spindles.

Figure S3. Elemental mapping of Zn, Fe, O, and C in the ZnFe,;O,/C spindles.

4. XPS survey spectra of the ZnFe,04/C, MnFe,04/C, CoFe;04/C, and NiFe,04/C

spindles.
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Figure S4. XPS survey spectra of the ZnFe,04/C, MnFe,04/C, CoFe,04/C, and NiFe,0,/C

spindles.
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5. XRD diffraction patterns of the MnFe,0,4/C, CoFe;04/C, and NiFe,04/C spindles.
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Figure S5. XRD diffraction patterns of the MnFe,O04/C, CoFe,04/C, and NiFe,O4/C spindles.
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6. XPS spectra of Mn 2p, Co 2p, Ni 2p, Fe 2p, O 1s, and C 1s for the MnFe,04/C,
CoFe;04/C, and NiFe,;04/C spindles.
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Figure S6. XPS spectra of (a) Mn 2p, (b) Fe 2p, (c) O 1s, and (d) C 1s for the MnFe,04/C

spindles.
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Figure S7. XPS spectra of (a) Co 2p, (b) Fe 2p, (¢) O 1s, and (d) C 1s for the CoFe,04/C

spindles.
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Figure S8. XPS spectra of (a) Ni 2p, (b) Fe 2p, (¢) O 1s, and (d) C s for the NiFe,O,/C

spindles.
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7. N, adsorption/desorption isotherms of the MFe,O4/C (M= Zn, Mn, Co, Ni)) spindles.
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Figure S9. N, adsorption/desorption isotherms of the MFe,O4/C (M= Zn, Mn, Co, Ni))
spindles. The specific surface areas of the samples were calculated using the

Brunauer—Emmett—Teller (BET) method.

S10



8. Reaction Schemes for the MFe,O4/C(M=Zn, Mn, Co, Ni) spindles as the anode for
LIBs.

(1) ZnFe,O,+xLi" +xe” — Li ZnFe,O,

@) LiZnFe,O,+(8—x)Li* +(8—x)e” — Zn’ +4Li,O+2Fe¢°
B) Zn"+Li"+e < LiZn

@  Zn’+Li,0 <> ZnO+2Li" +2e”

(5) 2Fe’ +3Li,0 <> Fe,O, +6Li" +6e”

Scheme S1. Reactions associated with the discharge/charge processes of the ZnFe,O4/C

spindles’

(1) MFe,O,+xLi" +xe” — Li MFe,O,

@ LiMFe,O,+(8—-x)Li*+(8-x)e” - M°+4Li,0+2F¢"
B M°+Li,0 < MO+2Li" +2e

@ 2Fe’ +3Li,0 <> Fe,0,+6Li" +6e

Scheme S2. Reactions associated with the discharge/charge processes of the MFe,O4/C (M=
Mn, Co, Ni) spindles2
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9. Charge/discharge capacities of the carbon spindles at the current rates of 0.4 and 1.6

C.
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Figure S10. Charge/discharge capacities of the carbon spindles at the current rates of 0.4 and

1.6 C.
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10. Comparison of the stable reversible capacity of the ZnFe,04/C spindles with other
ZnFe,04 based anodes and Comparison of the stable reversible capacity of the

MFe,04/C(M=Mn, Co, Ni) spindles with other MFe,O4 (M=Mn, Co, Ni) based anodes.

Table S1. Comparison of the stable reversible capacity of the ZnFe,O4/C spindles with other
ZnFe,O4 based anodes.

Mass
loading Current .
Materials of each rate /Cagaﬁlt}_ll I\t{umbler Ref.
electrode/ /mA g’ mAnle oreyeies
mg cm”
ZnFe;04/graphene 3
(ZnFe,0,/G) - 200 600 5
Hierarchical Porous
Acetylene Black/ 4
ZnFe,O4@Carbon 1.2~1.7 100 803 150
(AB/ZnFe,04@Carbon)
Porous hierarchical
Nitrogen-doped carbon 5
ZnFe;0, 1.6 100 809 50
(ZI’IFCQO4/N C)
ZnFe>O4 nanooctahedrons 6
(ZnFe,0, Oh) - 60 910 80
Core-shell ZnO/ZnFe,O4@C
mesoporous nanospheres - 500 893 60 7
(ZnO/ZnFe,04@C )
Hierarchical Mesoporous An
Bi-Component-Active 0.9 mg average
Zn0/ZnFe;04 Sub- per 200 950 of 10 8
Microcubes Cu foil discharge
(Bi-ZnO/ZnFe;04) capacities
3D mesoporous ZnFe,O4-
graphene composites - 500 970 200 ’
(3D ZnFe,04/G)
Hierarchical Shuttle-Shaped
Mesopoyous ZnFe;04 ~1.4 mg 100 396 50 10
Microrods per anode
(ZHF6204 MR)
ZnFe,;04-C nanocomposite 1
(ZnFe,04/C) 1.5~1.7 71 681 100
ZnFe,;04-nanocrystal- 12
assembled microcages - 100 840 100
(ZnFe;04 cages)
ultrafine ZnFe,O4
nanocrystals anchored on i 50 827 36 13
graphene
(ZnFe,04 nc/G)
ZnFe,0,@C/graphene 232 712.5 50 4
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nanocomposites

(ZI’IF6204@C/G )
Mesoporous ZnFe;O4
nanorods 0.7 100 983 50 15
(ZnFe;O4 NR)
ZnFe,O4 Cubes - 60 367 50 16
ZnFe,04/C spindles 1.0 200 950 70 This
work

Table S2. Comparison of the stable reversible capacity of the MFe,0,/C(M=Mn, Co, Ni)
spindles with other MFe,O4 (M=Mn, Co, Ni) based anodes.

Mass
' loading of  Current Capacity Number
Materials each rate JmA B o! of cveles Ref.
electrode/ /mA g’ & Y
mg cm™
Mesopprous MnFe,;04 i 185.6 712 50 17
microspheres
Core—Shell
NiFe,0,@TiO; - 100 756 60 18
Nanorods
~2 mg per 19
MnFe,04/graphene anode 400 706 100
MnFe204 nanoparticles i 200 904 40 20
dispersed on graphene
MnFe,O4/ gr.aphene i 200 634 80 21
composites
Carbon-coated
MnFe, 0, nanoparticle 1.8 200 1024 60 2
hollow microspheres
Hierarchical 1.0~1.2
NiFe,04/Fe;0; mg per 100 936.9 100 -
nanotubes anode
NiFe,04/C composite - 200 600 50 2
Electrospun 25
NiFe,04@C fibers 1.0~1.5 100 497 100
Ultrathin NiO/NiFe,O4 25 100 700 30 26
Nanoplates
Cos04/CoFe;04 i 64 756.5 25 7
Nanocomposite
CoFe,0y/carbon ~0.60 100 1033 60 2
nanotube aerogels
CoFe,04/C composite i 100 710 40 29
fiber
CoFe;04 quantum 1.0~1.1
dots/N-doped graphene mg per 100 838 50 30
composite anode
C@CoFe,04 fiber-in-  0.7~1.0 200 740 200 3
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tube mesoporous mg per

nanostructure anode
MnFe,04/C spindles 1.0 200 879 80 This work
CoFe,04/C spindles 1.0 200 787 80 This work
NiFe,04/C spindles 1.0 200 962 80 This work
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