Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Fabrication of Novel Lamellar Alternating Nitrogen-Doped Microporous Carbon Nanofilm/MoS₂ Composites with High Electrochemical Properties

Zhen Chen, Huiqi Xie, Linfeng Hu, Min Chen and Limin Wu

Fig. S1. XRD pattern of NMC-powder@MoS₂ and MoS₂.

Fig. S2. a,b) HR-TEM images and c-f) Surface SEM images of NMC nanofilms. d)

The cross section of NMC nanofilm shows the thickness is 25 nm, f) the enlarge SEM

image of NMC nanofilm.

Fig. S3. a) Mo 3d, b) S 2p and c) Mo 3p and N 1S XPS spectra of NMC-

nanofilm@MoS₂. d) Mo 3d XPS spectra of pure MoS_2 .

Fig. S4. SEM image of MOP powders.

Fig. S5. SEM image of the layer-by-layer stacking of NMC-nanofilm@MoS₂.

Fig. S6. TEM image of the layer-by-layer stacking of NMC-nanofilm@MoS₂.

Fig. S7. HR-TEM image of NMC-nanofilm@MoS₂.

Fig. S8. EDS sum spectra of NMC-nanofilm@MoS₂, Mo: S=1: 1.98 (atomic ratio).

Fig. S9. a) CV curves of the MoS_2 powders and b) CV curves of the NMC nanofilms,

for the first three cycles at a scan rate of 0.05 mVs⁻¹ between 0.005 and 3.0 V.

Fig. S10. a) Charge/discharge curves of the NMC-powder@MoS₂ for the first three cycles at a current density of 1.0 A g⁻¹ between 0.005 and 3.0 V. b) Cycling behaviors of NMC-powder@MoS₂ at current density of 1.0 A g⁻¹.

Fig. S11. HR-TEM image of NMC-powder@ MoS_2 after 500 charge/discharge cycles

at 1.0 A g^{-1} .

Fig. S12. a) EDS electron image and b-d) EDS Element mapping of NMC-

nanofilm@MoS_2 after 500 charge/discharge cycles at 1.0 A $g^{-1}\!.$

Materials	Current	Cycle	Capacity	Ref.
	density	number	(mAh g ⁻¹)	
	(A g ⁻¹)			
NMC-nanofilm @MoS ₂	1.0	500	1190	This
	2.0	2000	908	work
2D-Mesoporous-Carbon@MoS ₂	10	300	400	[1]
CNT/MoS ₂ hybrids	5.0	1000	800	[2]
Monolayer MoS ₂ -graphene hybrid aerogels	2.0	200	780	[3]
Carbon nanosheet @few-layer MoS ₂	2.0	520	676	[4]
Co ₉ S ₈ /MoS ₂ yolk –shell spheres	2.0	1200	300	[5]
Few-layer MoS_2 / reduced graphene oxide hybrids	1.0	1100	966	[6]
Carbon nanotubes @Low-crystallinity MoS ₂	1.0	400	600	[7]
MoS ₂ -graphene composite films	1.0	400	980	[8]
Nitrogen-doped graphene/MoS ₂	1.0	100	820	[9]
Column-like MoS ₂ superstructure	1.0	500	650	[10]
Hierarchical porous carbon	1.0	300	732	[11]
nanosheets@MoS ₂				
Graphene sheets @MoS ₂ nanosheets	1.0	400	900	[12]
MoS ₂ hollow nanospheres	0.5	100	1100	[13]
3D radially oriented MoS ₂	0.5	500	1009.2	[14]
nanospheres				
SWNT/MoS ₂ composites	0.5	50	1215	[15]
N-doped carbon nanoboxes@MoS ₂	0.4	200	952	[16]
Mesoporous carbon@MoS ₂	0.4	500	1023	[17]
Nitrogen-doped carbon@MoS ₂ microspheres	0.15	300	1050	[18]
Graphene/TiO ₂ @C/few-layer MoS ₂	0.1	100	802	[19]
Nitrogen-doped graphene/MoS ₂	0.1	100	1169	[20]
composites				
MoS ₂ –C nanocomposite	0.1	100	970	[21]
S-doped graphene @MoS ₂	0.1	300	1546	[22]
MoS ₂ /SiO ₂ /graphene hybrids	0.1	100	1060	[23]
3D honeycomb-like structured MoS_2	0.1	50	1025	[24]
Hollow fullerene-like MoS ₂ nanocages	0.1	100	1043.7	[25]
Interconnected carbon nanotube	0.1	100	1893	[26]

Table S1. Comparison of specific capacity at different current densities for NMC-nanofilm@MoS2 electrode with those MoS_2 -based electrodes reported previously.

@layered MoS ₂ nanohybrid				
Core-shell carbon@MoS ₂ nanotube	0.1	100	740	[27]
sponges				
C ₃ N ₄ /N-RGO/MoS ₂ hybrids	0.1	100	855	[28]

References

- Y. Fang, Y. Lv, F. Gong, A. A. Elzatahry, G. Zheng and D. Zhao, *Adv. Mater.*, 2016, 28, 9385-9390.
- [2] Y. M. Chen, X. Y. Yu, Z. Li, U. Paik and X. W. Lou, *Sci. Adv.*, 2016, **2**, e1600021.
- [3] L. F. Jiang, B. H. Lin, X. M. Li, X. F. Song, H. Xia, L. Li and H. B. Zeng, ACS Appl. Mater. Interfaces, 2016, 8, 2680-2687.
- [4] J. W. Zhou, J. Qin, X. Zhang, C. S. Shi, E. Z. Liu, J. J. Li, N. Q. Zhao and C. N. He, ACS Nano, 2015, 9, 3837-3848.
- [5] H. Geng, J. Yang, Z. Dai, Y. Zhang, Y. Zheng, H. Yu, H. Wang, Z. Luo, Y. Guo, Y. Zhang, H. Fan, X. Wu, J. Zheng, Y. Yang, Q. Yan and H. Gu, *Small*, 2017, 13, 1603490.
- [6] Z. Yu, J. Ye, W. Chen, S. Xu and F. Huang, *Carbon*, 2017, 114, 125-133.
- [7] X. Li, G. Wu, J. Chen, M. Li, W. Li, T. Wang, B. Jiang, Y. He and L. Mai, *Appl. Surf. Sci.*, 2017, **392**, 297-304.
- [8] T. T. Shan, S. Xin, Y. You, H. P. Cong, S. H. Yu and A. Manthiram, *Angew. Chem. Int. Ed.*, 2016, 55, 12783-12788.
- [9] C. Y. Zhao, X. Wang, J. H. Kong, J. M. Ang, P. S. Lee, Z. L. Liu and X. H. Lu, ACS Appl. Mater. Interfaces, 2016, 8, 2372-2379.
- [10] J. B. Ding, Y. Zhou, Y. G. Li, S. J. Guo and X. Q. Huang, *Chem. Mater.*, 2016, 28, 2074-2080.
- [11] S. K. Park, J. Lee, S. Bong, B. Jang, K. D. Seong and Y. Z. Piao, ACS Appl. Mater. Interfaces, 2016, 8, 19456-19465.
- [12] Y. Teng, H. Zhao, Z. Zhang, Z. Li, Q. Xia, Y. Zhang, L. Zhao, X. Du, Z. Du, P. Lv and K. Swierczek, ACS Nano, 2016, 10, 8526-8535.
- [13] Y. W. Wang, L. Yu and X. W. Lou, Angew. Chem. Int. Ed., 2016, 55, 7423-7426.
- [14] S. P. Zhang, B. V. R. Chowdari, Z. Y. Wen, J. Jin and J. H. Yang, ACA Nano, 2015, 9, 12464-12472.
- [15] Y. Liu, X. He, D. Hanlon, A. Harvey, U. Khan, Y. Li and J. N. Coleman, ACS Nano, 2016, 10, 5980-5990.
- [16] X. Y. Yu, H. Hu, Y. Wang, H. Chen and X. W. Lou, Angew. Chem. Int. Ed., 2015, 54, 7395-7398.
- [17] H. Jiang, D. Ren, H. Wang, Y. Hu, S. Guo, H. Yuan, P. Hu, L. Zhang and C. Li, Adv. Mater., 2015, 27, 3687-3695.
- [18] D. Xie, X. H. Xia, Y. D. Wang, D. H. Wang, Y. Zhong, W. J. Tang, X. L. Wang and J. P.

Tu, Chem. Eur. J., 2016, 22, 11617-11623.

- [19] B. Chen, E. Liu, T. Cao, F. He, C. Shi, C. He, L. Ma, Q. Li, J. Li and N. Zhao, *Nano Energy*, 2017, 33, 247-256.
- [20] J. B. Ye, Z. T. Yu, W. X. Chen, Q. N. Chen, S. R. Xu and R. Liu, *Carbon*, 2016, 107, 711-722.
- [21] W. Y. Sun, Z. Hu, C. Y. Wang, Z. L. Tao, S. L. Chou, Y. M. Kang and H. K. Liu, ACS Appl. Mater. Interfaces, 2016, 8, 22168-22174.
- [22] X. Wang, G. Li, M. H. Seo, F. M. Hassan, M. A. Hoque and Z. Chen, *Adv. Energy Mater.*, 2015, 5, 1501106.
- [23] S. Han, Y. R. Zhao, Y. P. Tang, F. Z. Tan, Y. S. Huang, X. L. Feng and D. Q. Wu, *Carbon*, 2015, 81, 203-209.
- [24] J. Zhou, J. Qin, N. Zhao, C. Shi, E. Z. Liu, F. He, J. Li and C. He, J. Mater. Chem. A, 2016, 4, 8734-8741.
- [25] X. Zuo, K. Chang, J. Zhao, Z. Xie, H. Tang, B. Li and Z. Chang, J. Mater. Chem. A, 2016, 4, 51-58.
- [26] J. Y. Li, Y. Hou, X. F. Gao, D. S. Guan, Y. Y. Xie, J. H. Chen and C. Yuan, *Nano Energy*, 2015, 16, 10-18.
- [27] Y. Wang, Z. Ma, Y. Chen, M. Zou, M. Yousaf, Y. Yang, L. Yang, A. Cao and R. P. S. Han, *Adv. Mater.*, 2016, 28, 10175-10181.
- [28] Y. Hou, J. Y. Li, Z. H. Wen, S. M. Cui, C. Yuan and J. H. Chen, *Nano Energy*, 2014, 8, 157-164.