Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

Facile synthesis and the exploration of zinc storage mechanism of β-MnO₂ nanorod with exposed (101) planes as a novel cathode material for high performance eco-friendly zincion battery

Saiful Islam^{§†}, Muhammad Hilmy Alfaruqi^{§†}, Vinod Mathew[§], Jinju Song[§], Sungjin Kim[§], Seokhun Kim[§], Jeonggeun Jo[§], Joseph Paul Baboo[§], Duong Tung Pham[§], Dimas Yunianto Putro[§], Yang-Kook Sun⁺ and Jaekook Kim[§]*

[§]Department of Materials Science and Engineering, Chonnam National University, 300

Yongbong-dong, Bukgu, Gwangju 61186, Republic of Korea

*Department of Energy Engineering, Hanyang University, 17 Haendang-dong, Seongdong-gu,

Seoul 04763, Republic of Korea

^{*}Corresponding author. Tel: +82-62-530-1703; Fax: +82-62-530-1699.

E-mail address: jaekook@chonnam.ac.kr (Jaekook Kim)

[†]These authors contributed equally to this work.

Fig. S1 XRD patterns of the β -MnO₂ synthesized at different hydrothermal reaction temperatures.

Fig. S2 FE-SEM images of the sample prepared at various reaction temperatures: (a) 80, (b) 100, (c) 120, (d) 150, (e) 160, and (f) 180 °C.

Fig. S3 Simulated XRD patterns of the β -MnO₂ structure obtained from X'Pert HighScore Plus software.

Fig. S4 HR-TEM image and corresponding SAED pattern of the β -MnO₂ nanorod.

Fig. S5 XPS Mn2p spectrum of the β -MnO₂ nanorod powder.

Fig. S6 CV curves of β -MnO₂ nanorod electrode in the ZIB test cell at a scan rate of 0.5 mV s⁻¹.

Fig. S7 Electrochemical performance of β -MnO₂ bulk electrode in Zn test cell.

Table S1. ICP-AES results of the electrolyte recovered from the Zn test cells after the first discharge and second discharge cycles.

Electrolyte Condition	Mn concentration (ppm)
First discharge	329
Second discharge	321

Fig. S8 CV curves of the β -MnO₂ nanorod electrode in 1 M ZnSO₄ electrolyte with the addition of 0.1 M MnSO₄.

Fig. S9 Linear relationship between Mn oxidation state and photon energy recorded from XANES spectra.

Fig. S10 Comparison of (a) ε -MnO₂ and (b) β -MnO₂ crystallographic structures.

Fig. S11 Cycleability plots of β -MnO₂ nanorod cathode at current densities of 200 and 500 mAh g^{-1} .

Fig. S12 FE-TEM image of β -MnO₂ nanorod cathode after 200 cycles.