Supporting Information

Surface modified titanium dioxide by transition metals: nickel as a winning transition metal for solar light photocatalysis

Andraž Šuligoj,^{a,b} Iztok Arčon,^{c,d} Matjaž Mazaj,^a Goran Dražič,^e Denis Arčon,^g Pegie Cool,^f Urška Lavrenčič Štangar^{b,c} and Nataša Novak Tušar^{a,c}

^a Department of Inorganic Chemistry and Technology, National Institute of Chemistry,
Hajdrihova 19, SI-1001 Ljubljana, Slovenia
^b Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113,
1000 Ljubljana, Slovenia
^c University of Nova Gorica, Vipavska 13, SI-1001 Nova Gorica, Slovenia
^d Department for low and intermediate energy physics, Jozef Stefan Institute, Jamova 39, SI- 1000 Ljubljana, Slovenia
^e Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, SI- 1001 Ljubljana, Slovenia
^f Laboratory for Adsorption and Catalysis, Department of Chemistry, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, , 2610 Wilrijk, Belgium
^g Condensed Matter Physics, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia

Fig. S1. Spectrum of the solar lamps used in Rz ink and TPA test. The dashed line shows the UV cutoff filter applied in visible-light tests.

Fig. S2. Top – N_2 -sorption isotherms of metal grafted TiO₂ (a). (b) and (c) show isotherms of low and high concentration Cu and Fe-grafted TiO₂, respectively. Bottom – Zeta potential measurements of titania with its surface modified with selected transition metals.

Fig. S3. ATR FT-IR spectra of TiO₂-SiO₂ films (A) near IR range and (B) 1600–600 cm⁻¹ range. Asymmetric Si–O–Si stretching is labeled at 1120 cm⁻¹. Samples are labelled (a) Co-TiO2 0.5%, (b) Cu-TiO2 0.5%, (c) Fe-TiO2 0.5%, (d) Mn-TiO2 0.5%, (e) Ni-TiO2 0.5%, (f) Zn-TiO2 0.5%, (g) unmodified TiO₂. In plot (C) a closer view in the 3700–2800 cm⁻¹ range is shown. Note the lower intensity of the 3350 cm⁻¹ band in Ni- and Zn-modified samples.

XANES spectra were taken to elucidate the oxidation states of nanoclusters on the TiO_2 surface.

Fig. S4. XANES spectra of (a) Cu-TiO2 0.5%, (b) Fe-TiO2 0.5% and (c) Zn-TiO2 0.5% samples.

Ox. #	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
+1							X	х	
+2	X	X	X	Х	x	x	x	x	х
+3	X	X	X	X	X	x	X	x	
+4	X	X		Х	x	х			
+5		X	Х	Х					
+6			X	х	X				
+7				х					

 Table S1. Most common oxidation states of 3d ions.

Fig. S5. Diffuse reflectance data of the films; (a) Tauc plots of the films and (b) true absorbance for nickel modified sample series in the concentration range 0 to 1 wt.%. Note the non-linear red-shift of the absorption in (b) suggesting that Ni-ions were not included in the TiO_2 lattice.

Table S2. Values of indirect band gap for concentration series of Fe^{3+} and Cu^{2+} -modified titania films. The values were obtained by plotting the Kubelka-Munk-transformed reflectance spectra of the films. Then the onsets in the K-M-transformed plots were taken as the E_g values.

Sample (x–TiO ₂)	Indirect band gap (eV)
0.05% Fe ³⁺	3.05
$0.075\% \ Fe^{3+}$	3.18
0.1% Fe ³⁺	3.29
0.5% Fe ³⁺	3.34
2% Fe ³⁺	3.00
5% Fe ³⁺	3.06
7.5% Fe ³⁺	3.08
10% Fe ³⁺	2.90
0.05% Cu ²⁺	3.35
$0.075\% \ Cu^{2+}$	3.28
0.1% Cu ²⁺	3.31
0.5% Cu ²⁺	3.34
2% Cu ²⁺	3.22
5% Cu ²⁺	3.33
7.5% Cu ²⁺	3.34
10% Cu ²⁺	3.40

Fig. S6. Formation of HTPA from TPA for TiO_2 modified with 2 wt.% Fe under visible (grey), solar (blue) and UVA (red) irradiation.

	HTPA	formation	
	(×10-9 M/min)		
Sample (x-TiO ₂)	Solar	Visible	
Mn	7.16	0.45	
Fe	39.94	2.56	
Co	20.98	1.33	
Ni	68.13	4.57	
Cu	18.43	1.08	
Zn	92.80	6.44	

 Table S3. HTPA formation rate constants under solar and under visible light illumination.

_

Fig. S7. Surface density of TiO_2 laid on glass substrate as a function of number of coatings. The dashed line represents 1 mg/cm² benchmark, where the activity reaches the plateau, i.e. further increasing of mass does not increase the photoactivity. TiO_2 samples were modified with 0.5 wt.% of transition metal chosen.

Fig. S8. TEM micrographs of Cu-modified sample. (a) and (b) bright-field micrographs and (c) dark-field.

Fig. S9. EPR spectra of Ni-TiO₂ 1% at 20 K; blue and red colours in the upper plot represent spectra with the light on and off, respectively; the lower plot denotes the difference between the two.