Electronic Supplementary Information

Finite-temperature property-maps of Li-Mn-Ni-O

cathode materials from ab-initio calculations

Jan-Michael Albina,*^a Anika Marusczyk,^{ab} Thomas Hammerschmidt,^a Thomas

 $\mathsf{Eckl},^b$ and $\mathsf{Ralf}\;\mathsf{Drautz}^a$

^aICAMS, Ruhr Universität Bochum, Germany ^bRobert Bosch GmbH, Renningen, Germany

^{*}To whom correspondence should be addressed. E-mail: jan-michael.albina@ruhr-uni-bochum.de

Choice of U parameter

For choosing the value of U_{eff} for Mn and Ni we determined the band-gap for Li₂MnO₃, LiMnO₂ and LiNiO₂ for different choices of U_{eff} in previous works.

Figure 1: Band gap as a function of U_{eff} for (a) Li₂MnO₃, LiMnO₂ and (b) LiNiO₂. ^{*a*} Ref. 1; ^{*b*} Ref. 2; ^{*c*} Ref. 3; ^{*d*} Ref. 4; ^{*e*} Ref. 5; ^{*f*} Ref. 6; ^{*g*} Ref. 7; ^{*h*} Ref. 8.

Ternary phase diagram for the Li-Mn-O system at T=0 K

The ternary Phase diagram presented in Fig. 2 is evaluated from first-principles calculations at T=0 K. The reported result does not include entropic contributions.

Figure 2: Ternary phase diagram at T=0 K (without zero-point energy corrections) for the Li-Mn-O system.

Phonon density-of-states

The phonon density of states (DOS) for selected compounds forming/disappearing along the Li_2MnO_3 delithiation path are plotted in Fig. 3. The DOS for Li_2MnO_3 and $LiMn_{0.5}Ni_{0.5}O_2$ (Fig. 3 (a)) exhibit similar shapes while $LiMnO_2$ shows a greater degree of splitting. The dissimilarity comes most likely from the additional Li in the TM layer of Li_2MnO_3 and $LiMn_{0.5}Ni_{0.5}O_2$ which is absent in the $LiMnO_2$ material. As for the spinel-like structures (Fig. 3 (b)), the DOS are remarkably similar, reflecting the three-dimensional character of spinel-like compounds. Regarding the DOS for Mn-O compounds, two subgroups are identified with the Mn_2O_3 and Mn_3O_4 phases (Fig. 3 (c))on one hand, and the MnO_2 and $MnNiO_3$ phases (Fig. 3 (d)) on the other hand.

Figure 3: Phonon density of states for selected compounds for ming/disappearing along the $\rm Li_2MnO_3$ delithiation path.

Properties computed from the convex hull

Chemical potentials

The total formation energy of a point located on a facet is related to the formation energies of each individual phase through the weight coefficients. The concentration of an element kis expressed as the sum of the relative concentration of the element in each phase weighted by the factor w_i of the phase i.

$$C_k = \sum_i w_i c_{ik} \tag{1}$$

Therefore, the total formation energy, which is also the product of the number of particles times the formation energy per atom of each individual phase, can be rewritten as:

$$E_{f} = N\varepsilon_{f} = \sum_{i} w_{i}\varepsilon_{f,i}N$$

$$= \sum_{ik} \varepsilon_{f,i} (c^{-1})_{ik}C_{k}N$$

$$= \sum_{ik} \varepsilon_{f,i} (c^{-1})_{ik}N_{k}$$

(2)

with $w_i = \underline{C} \ \underline{C}_i^{-1} = \sum_k C_k (c^{-1})_{ik}$ where the -1 superscript denotes the inverse matrix. N_k is the number of particles of the species k.

Relation between open circuit voltage and formation energies

The average voltage is the energy difference between two composition limits divided by the charge transfer between these limits.

$$V = -\frac{\Delta E}{\Delta Q} = -\frac{E_2 - E_1}{Q_2 - Q_1}$$
(3)

where E_1 and E_2 are the energies of structure 1 and 2 plus a pure lithium contribution given by:

$$E_{1} = E_{1}(N_{k}^{(1)}) + N_{Li}^{(2)}\varepsilon_{Li}$$

$$E_{2} = E_{2}(N_{k}^{(2)}) + N_{Li}^{(1)}\varepsilon_{Li}$$
(4)

 N_k is the number of atoms for the component k and ε_{Li} is the energy per lithium atom of the reference phase (lithium bcc obtained by DFT).

 Q_1 and Q_2 are expressed as:

$$Q_i = e N_{Li}^{(i)} \quad \text{and} \quad i = 1, 2 \tag{5}$$

with the electron charge e.

The energy difference can be expressed in terms of the formation energies ε_f

$$\Delta E = E_2 - E_1 = N_2 \varepsilon_{f,2} - N_1 \varepsilon_{f,1} \tag{6}$$

with N_1 and N_2 the total number of atoms in the structure 1 and 2, respectively.

$$N_1 = N_{Li}^{(i)} + N_{Mn} + N_{Ni} + N_O \quad \text{and} \quad i = 1, 2$$
(7)

Note that the number of atoms for the components other than lithium remains unchanged in the structure 1 and 2.

Using the definition of concentration for the Li component $C_{Li}^{(i)} = (N_{Li}^{(i)}/N_i)$, the difference in energy can be further rewritten as:

$$\Delta E = E_2 - E_1 = N_{Li}^{(2)} \frac{N_2}{N_{Li}^{(2)}} \varepsilon_{f,2} - N_{Li}^{(1)} \frac{N_1}{N_{Li}^{(1)}} \varepsilon_{f,1}$$

$$= N_{Li}^{(2)} \frac{\varepsilon_{f,2}}{C_{Li}^{(2)}} - N_{Li}^{(1)} \frac{\varepsilon_{f,1}}{C_{Li}^{(1)}}$$
(8)

We define $\tilde{N} = N_{Mn} + N_{Ni} + N_O$ thus:

$$N_i = N_{Li}^{(i)} + \tilde{N}$$
 and $i = 1, 2$ (9)

and therefore:

$$N_{Li}^{(i)} = (N_{Li}^{(i)} + \tilde{N})C_{Li}^{(i)} \quad \text{and} \quad i = 1, 2$$
(10)

which is rewritten as:

$$N_{Li}^{(i)} = \frac{\tilde{N}C_{Li}^{(i)}}{(1 - C_{Li}^{(i)})} \quad \text{and} \quad i = 1, 2$$
(11)

Inserting Eq. 11 into Eq. 8 and dividing by ΔQ , the average voltage is eventually expressed by:

$$V = -\frac{\Delta E}{\Delta Q} = -\frac{\left[(1 - C_{Li}^{(1)})\varepsilon_{f,2} - (1 - C_{Li}^{(2)})\varepsilon_{f,1}\right]}{e(C_{Li}^{(2)} - C_{Li}^{(1)})}$$
(12)

The contribution from each phase i to the voltage can be estimated independently using the formation energy $\varepsilon_{f,i}$ with the total voltage being the sum of the individual phase voltages:

$$V = \sum_{i} V_i \tag{13}$$

with

$$V_{i} = -\frac{\left[(1 - C_{Li}^{(1)})w_{i,2}\varepsilon_{fi,2} - (1 - C_{Li}^{(2)})w_{i,1}\varepsilon_{fi,1}\right]}{e(C_{Li}^{(2)} - C_{Li}^{(1)})}$$
(14)

List of phases and formation energies

Table 1: Phase formula, space group, and calculated formation energies with GGA+U in Li-Mn-Ni oxides at T=0 K without zero-point energy corrections. Phases with multiple space group entries have similar formation energies (within less than 1 meV/atom). Partly delithiated phases (*e.g.*, Li_{1.5}MnO₃ - C2/m) are not included in this table.

Phase	Crystal structure	E_f (eV)
Li	$Im\bar{3}m$	0.0000
$\mathrm{Li_{10}Mn_{23}O_{48}}$	Cm	-2.1273
$\mathrm{Li}_{10}\mathrm{Ni}_4\mathrm{O}_9$	$P4_2/nmc$	-2.0337
$\mathrm{Li}_{11}\mathrm{Mn}_{13}\mathrm{O}_{32}$	C2/m	-2.1689
$\rm Li_{11}Mn_2O_8$	C2	-2.1383
$\mathrm{Li}_{11}\mathrm{Mn}_{6}\mathrm{O}_{16}$	P1	-2.2528
$\mathrm{Li}_{11}\mathrm{Ni}_{13}\mathrm{O}_{24}$	C2/m	-1.9592
$\mathrm{Li}_{11}(\mathrm{NiO}_2)_{12}$	C2/m	-1.9097
$\mathrm{Li}_{11}(\mathrm{NiO}_4)_2$	C2	-2.0278
$\mathrm{Li}_{12}\mathrm{Mn}_{2}\mathrm{O}_{9}$	P1	-2.1082
$\mathrm{Li_{13}Mn_{17}O_40}$	C2/m	-2.1956
$\mathrm{Li}_{13}\mathrm{Mn}_{21}\mathrm{O}_{48}$	Cm	-2.1691
$\mathrm{Li}_{13}\mathrm{Mn}_{2}\mathrm{O}_{9}$	P1	-2.1100
$\mathrm{Li}_{13}\mathrm{Mn}_8\mathrm{O}_{24}$	C2	-2.1234
$\mathrm{Li}_{13}\mathrm{Mn}_8\mathrm{O}_{24}$	$P\bar{1}$ - $P2/m$	-2.1211
$\mathrm{Li}_{13}\mathrm{Ni}_{15}\mathrm{O}_{28}$	$P\bar{1}$	-1.9621
$\mathrm{Li}_{13}\mathrm{Ni}_9\mathrm{O}_{22}$	$P\bar{1}$	-1.9100
$\rm Li_{14}Mn_2O_9$	$P\bar{3}$	-2.1006
$\mathrm{Li}_{17}\mathrm{Ni}_{11}\mathrm{O}_{28}$	$P\bar{1}$	-1.8930
$\mathrm{Li}_{19}\mathrm{Ni}_{23}\mathrm{O}_{42}$	$P\bar{1}$	-1.9652
${ m Li}_1{ m MnO}_3$	C2/m	-1.8324

Table 1 (Continued)

Phase	Crystal structure	\mathbf{E}_f (eV)
$\mathrm{Li}_{23}\mathrm{Ni}_{17}\mathrm{O}_{40}$	$P\bar{1}$	-1.9168
$\rm Li_2Mn_2Ni_3O_{12}$	Pbcn	-1.3313
$\rm Li_2Mn_2Ni_3O_{12}$	Pnma	-1.3631
$\rm Li_2Mn_2NiO_6$	Cmce	-2.1465
${\rm Li}_2{\rm Mn}_2{\rm NiO}_8$	$P\bar{1}$	-1.6989
$\rm Li_2Mn_2O_5$	P4/mmm	-1.8705
$\rm Li_2Mn_3Ni_2O_{12}$	Pnma	-1.6032
$\rm Li_2Mn_3NiO_8$	$Fd\bar{3}m$	-2.2076
${ m Li}_2{ m Mn}_3{ m NiO}_8$	$P2_{1}3$	-2.1517
${\rm Li}_2{\rm Mn}_3{\rm O}_6$	C2/m	-2.2626
${\rm Li}_2{\rm Mn}_3{\rm O}_6$	Cmce	-2.2077
${\rm Li}_2{\rm Mn}_3{\rm O}_6$	P1	-2.2170
${\rm Li}_2{\rm Mn}_3{\rm O}_7$	$P\bar{1}$	-2.1605
${\rm Li}_2{\rm Mn}_3{\rm O}_7$	$P2_1/m$	-1.9975
$\rm Li_2Mn_3$	$R\bar{3}c$	-0.0063
${\rm Li}_2{\rm Mn}_4{\rm O}_9$	$P\bar{3}c1$	-2.0590
$\rm Li_2Mn_5O_{10}$	$P\bar{1}$	-2.1752
$\rm Li_2Mn_5O_{12}$	Cc	-1.9174
$\rm Li_2Mn_7O_{12}$	$P2_1$	-2.2532
$\rm Li_2MnNi_2O_8$	$P\bar{1}$	-1.6746
${ m Li}_2{ m MnNi}_3{ m O}_8$	C2/m	-1.8454
${ m Li}_2{ m MnNi}_3{ m O}_8$	P1	-1.8872
${ m Li}_2{ m MnNi}_3{ m O}_8$	$R\bar{3}m$	-1.8952
${\rm Li}_2{\rm Mn}({\rm NiO}_3)_2$	C2	-1.9813
${\rm Li}_2{\rm Mn}({\rm NiO}_3)_2$	Cmce	-1.9698

Table 1 (Continued)

Phase	Crystal structure	E_f (eV)
Li ₂ MnNiO ₄	$Fm\bar{3}m$	-2.0684
$\rm Li_2MnNiO_4$	Imcm - P2/m	-2.2018
${ m Li}_2{ m MnNiO}_6$	$Fm\bar{3}m$	-1.3501
${\rm Li}_2{\rm MnO}_2$	Immm	-2.1700
${ m Li}_2{ m MnO}_2$	$P\bar{3}m1$	-2.2241
${ m Li}_2{ m MnO}_3$	C2/m	-2.2829
$\rm Li_2Ni_5O_7$	C2/m	-2.0015
$\mathrm{Li}_2(\mathrm{NiO}_2)_{21}$	$P\bar{1}$	-1.3730
$Li_2(NiO_2)_3$	Aea2	-1.7233
$\mathrm{Li}_2(\mathrm{NiO}_2)_3$	C2/m	-1.7847
$\mathrm{Li}_2(\mathrm{NiO}_2)_3$	Cc	-1.7405
$\mathrm{Li}_2(\mathrm{NiO}_2)_3$	$P\bar{1}$	-1.7976
$\rm Li_2(NiO_2)_5$	$P\bar{1}$	-1.6476
Li ₂ NiO ₂	Immm	-2.0295
Li ₂ NiO ₂	$P\bar{3}m1$	-2.0970
Li ₂ NiO ₂	$R\bar{3}m$	-2.0235
Li ₂ NiO ₃	C/2m - $C/2c$	-1.9034
Li_2O_2	Cm	-1.6719
Li_2O_2	Cmcm	-1.6364
$\rm Li_2O_2$	$F\bar{4}3m$	-1.1042
$\rm Li_2O_2$	$Fm\bar{3}m$	-1.2937
$\rm Li_2O_2$	P4/mmm	-1.3633
$\rm Li_2O_2$	$P6_3mc$	-1.2797
$\rm Li_2O_2$	$P6_3/mmc$	-1.7746
$\rm Li_2O_2$	$P\bar{6}m2$	-1.4766

Table 1 (Continued)

Phase	Crystal structure	$E_f (eV)$
$\rm Li_2O_2$	$Pm\bar{3}m$	-1.3306
$\rm Li_2O_2$	Pmma	-1.3956
$\rm Li_2O_3$	$Pm\bar{3}m$	-0.5037
$\rm Li_2O_3$	$R\bar{3}c$	-1.4723
Li ₂ O	$Fm\bar{3}m$ - $R\bar{3}m$	-2.0867
Li ₂ O	$P4_2/mnm$	-2.0389
Li ₂ O	Pnma	-2.0008
$\mathrm{Li}_{3}\mathrm{Mn}_{2}\mathrm{Ni}_{5}\mathrm{O}_{12}$	C2	-1.9882
${\rm Li}_3{\rm Mn}_2({\rm NiO}_4)_2$	$P\bar{1}$	-1.8875
${ m Li}_3{ m Mn}_2{ m NiO}_6$	C2/m	-2.2341
${ m Li}_3{ m Mn}_2{ m O}_4$	C2/c	-2.1039
${ m Li}_3{ m Mn}_2{ m O}_4$	Imma	-2.0892
${ m Li}_3{ m Mn}_3{ m NiO}_8$	C2/m	-2.1661
${ m Li}_3{ m Mn}_3{ m NiO}_8$	Cc	-2.1585
${ m Li_3Mn_3NiO_8}$	$P\bar{1}$	-2.2224
${ m Li}_3{ m Mn}_3{ m O}_8$	C2	-2.0672
${ m Li}_3{ m Mn}_3{ m O}_8$	$P4_{3}32$	-2.1049
${ m Li}_3{ m Mn}_3{ m O}_8$	$P6_3mc$	-2.0644
${ m Li}_3{ m Mn}_3{ m O}_8$	$R\bar{3}m$	-2.0934
${ m Li}_3{ m Mn}_4{ m NiO}_8$	C2/m	-2.3205
${ m Li}_3{ m Mn}_4{ m O}_8$	C2/m	-2.2860
${ m Li}_3{ m Mn}_4{ m O}_8$	$P\bar{1}$	-2.2607
${ m Li}_3{ m Mn}_4{ m O}_8$	$R\bar{3}m$	-2.2666
${ m Li}_3{ m Mn}_5{ m O}_{10}$	$P\bar{1}$	-2.2275
${ m Li}_3{ m Mn}_5{ m O}_8$	$R\bar{3}m$	-2.3258

Phase	Crystal structure	E_f (eV)
Li ₃ Mn ₇ O ₁₆	R3m	-2.0453
${ m Li}_3{ m Mn}_8{ m O}_{16}$	Pmmn	-2.1842
Li ₃ Mn	$Fm\bar{3}m$	-0.0066
$\rm Li_3Mn$	I4/mmm	-0.0185
Li ₃ MnNi ₃ O ₈	C2/m	-1.9883
${ m Li_3MnNi_3O_8}$	$R\bar{3}m$	-1.9648
$\rm Li_3Mn(NiO_2)_4$	C2/m	-2.1167
${\rm Li}_3{\rm Mn}({\rm NiO}_3)_2$	C2/c	-2.1087
${\rm Li}_3{\rm Mn}({\rm NiO}_3)_2$	C2/m	-2.1192
${ m Li}_3{ m MnO}_3$	$P2_{1}/c$	-2.1722
${ m Li}_3{ m MnO}_3$	P321	-2.1746
${ m Li}_3{ m MnO}_3$	$P4_2/mnm$	-2.2243
${ m Li}_3{ m MnO}_4$	Cmmm	-2.0611
${ m Li}_3{ m MnO}_4$	$I\bar{4}3m$	-2.0592
${ m Li}_3{ m MnO}_4$	$Pmn2_1$	-2.0758
${ m Li}_3{ m MnO}_4$	Pnma	-2.0703
${\rm Li}_3{\rm Mn}$	$P6_3/mmc$	-0.0128
${\rm Li}_3{\rm Mn}$	$Pm\bar{3}m$	-0.0143
${\rm Li}_3{ m Ni}_5{ m O}_8$	C2/m	-1.9825
${\rm Li}_3{ m Ni}_5{ m O}_8$	$R\bar{3}m$	-1.9806
${\rm Li}_3({\rm NiO}_2)_4$	C2/m	-1.8476
${\rm Li}_3({\rm NiO}_2)_4$	$P\bar{1}$	-1.8042
$\rm Li_3(NiO_2)_5$	$P\bar{1}$	-1.7614
${\rm Li}_3({\rm NiO}_2)_8$	$P\bar{1}$	-1.6166
Li ₃ NiO ₃	$P4_2/mnm$	-1.9042

Table 1 (Continued)

Table 1 (Continued)

Phase	Crystal structure	E_f (eV)
Li ₃ O	$Fm\bar{3}m$	-0.7343
Li ₃ O	I4/mmm	-0.7444
Li ₃ O	$P6_3/mmc$	-1.4064
Li ₃ O	$Pm\bar{3}m$	-0.8992
${\rm Li}_{47}({\rm NiO}_4)_8$	P1	-2.0491
$\rm Li_4Mn_{13}O_{24}$	P1	-2.2394
$\rm Li_4Mn_2Ni_3O_{10}$	$P\bar{1}$	-2.0535
$\mathrm{Li}_4\mathrm{Mn}_2\mathrm{Ni}_5\mathrm{O}_{12}$	$P2_1$	-2.0714
${\rm Li}_4{\rm Mn}_3({\rm NiO}_4)_3$	$P\bar{1}$	-2.0850
${ m Li}_4{ m Mn}_3{ m NiO}_8$	C2/m	-2.2713
${ m Li}_4{ m Mn}_3{ m O}_7$	$P2_1/m$	-2.2723
${ m Li}_4{ m Mn}_3{ m O}_8$	R32	-2.2183
${ m Li}_4{ m Mn}_3{ m O}_8$	$R\bar{3}m$	-2.2055
$\mathrm{Li}_4\mathrm{Mn}_5\mathrm{Ni}_3\mathrm{O}_{16}$	Cm	-2.0757
${ m Li}_4{ m Mn}_5{ m NiO}_{12}$	C2/m	-2.1838
${\rm Li}_4{\rm Mn}_5({\rm NiO}_6)_2$	$P2_1$	-2.2485
${ m Li}_4{ m Mn}_5{ m O}_{10}$	$P\bar{1}$	-2.2953
$\mathrm{Li}_4\mathrm{Mn}_5\mathrm{O}_{12}$	C2/c	-2.1997
$\rm Li_4Mn_7O_{12}$	P1	-2.3169
$\rm Li_4Mn_7O_{16}$	C2/m	-2.0884
${\rm Li}_4{\rm Mn}({\rm Ni}_2{\rm O}_5)_2$	$P\bar{1}$	-1.9658
${\rm Li}_4{\rm MnNi}_5{\rm O}_{12}$	C2	-1.8827
${ m Li}_4{ m MnO}_3$	Cc	-2.1272
$\mathrm{Li}_4\mathrm{Ni}_5\mathrm{O}_9$	$P\bar{1}$	-1.9668
$\mathrm{Li}_4\mathrm{Ni}_7\mathrm{O}_{11}$	$P\bar{1}$	-1.9921

Table 1 (Continued)
-----------	------------

Phase	Crystal structure	\mathbf{E}_f (eV)
$Li_4(NiO_2)_{11}$	$P\bar{1}$	-1.6150
${\rm Li}_4({\rm NiO}_2)_5$	$P\bar{1}$	-1.8673
$\mathrm{Li}_4(\mathrm{NiO}_2)_7$	$P\bar{1}$	-1.7479
$\rm Li_4O_5$	P4/mmm	-1.5153
$\mathrm{Li}_{5}\mathrm{Mn}_{2}\mathrm{Ni}_{3}\mathrm{O}_{10}$	$P\bar{1}$	-2.1680
$\mathrm{Li}_{5}\mathrm{Mn}_{2}\mathrm{Ni}_{5}\mathrm{O}_{12}$	C2	-2.1521
${ m Li}_5{ m Mn}_3({ m NiO}_5)_2$	$P\bar{1}$	-2.1123
${ m Li}_5{ m Mn}_4{ m O}_8$	C2/m	-2.2471
${ m Li}_5{ m Mn}_4{ m O}_8$	$Cmc2_1$	-2.2676
${ m Li}_5{ m Mn}_5({ m NiO}_6)_2$	C2	-2.2872
$\rm Li_5Mn_5O_{12}$	P1	-2.1942
$\rm Li_5Mn_6O_{12}$	$P\bar{1}$	-2.2890
${ m Li}_5{ m Mn}_6{ m O}_{16}$	$R\bar{3}m$	-1.9957
$\rm Li_5Mn_7O_{12}$	C2	-2.3306
$\rm Li_5Mn_7O_{15}$	Cm	-2.1963
$\rm Li_5Mn_7O_{16}$	Pnnm	-2.2236
$\rm Li_5Mn(Ni_2O_5)_2$	$P\bar{1}$	-2.0537
${\rm Li}_5{\rm MnO}_4$	Aea2	-2.1509
${\rm Li}_5{\rm MnO}_4$	$P2_1/mn$	-2.1292
${\rm Li}_5{\rm MnO}_4$	$P4_2/nmc$	-2.1014
${\rm Li}_5{\rm MnO}_4$	Pbca	-2.1493
${ m Li}_5{ m MnO}_4$	Pmmn	-2.1241
${ m Li}_5{ m MnO}_5$	C2/m	-2.0572
$\mathrm{Li}_{5}\mathrm{Ni}_{7}\mathrm{O}_{12}$	C2	-1.9693
$\mathrm{Li}_5\mathrm{Ni}_9\mathrm{O}_{16}$	$P\bar{1}$	-1.8089

Table 1 (Continued)

Phase	Crystal structure	\mathbf{E}_f (eV)
${\rm Li}_5({\rm NiO}_2)_4$	Cc	-1.9390
${\rm Li}_5({\rm NiO}_2)_4$	$P4_{3}32$	-1.9284
${\rm Li}_5({\rm NiO}_2)_6$	P1	-1.8772
${\rm Li}_5({\rm NiO}_2)_8$	P1	-1.7727
$\rm Li_5NiO_4$	Aea2	-2.0096
$\rm Li_5NiO_4$	Pbca	-2.0328
$\mathrm{Li}_{6}\mathrm{Mn}_{5}\mathrm{Ni}_{3}\mathrm{O}_{16}$	Cm	-2.1479
$\rm Li_6Mn_5O_{10}$	Cm	-2.2824
$\rm Li_6Mn_5O_{12}$	C2	-2.2487
$\rm Li_6Mn_5O_{12}$	P1	-2.2516
$\rm Li_6Mn_9O_{20}$	C2/m	-2.2123
$\rm Li_6MnNi_7O_{16}$	$P\bar{1}$	-1.9044
${\rm Li}_6{\rm MnO}_4$	$P4_2/nmc$	-2.1520
$\mathrm{Li}_{6}(\mathrm{NiO}_{2})_{13}$	$P\bar{1}$	-1.6764
${\rm Li}_6({\rm NiO}_2)_5$	$P\bar{1}$	-1.9427
$\rm Li_6NiO_4$	Pmmn	-2.0711
$\mathrm{Li}_{7}\mathrm{Mn}_{10}\mathrm{O}_{20}$	P1	-2.1192
$\rm Li_7Mn_{10}O_{24}$	C2	-2.1341
$\rm Li_7Mn_{11}O_{24}$	C2	-2.2370
$\mathrm{Li}_{7}\mathrm{Mn}_{11}\mathrm{O}_{24}$	C2/m	-2.1799
$\mathrm{Li}_{7}\mathrm{Mn}_{11}\mathrm{O}_{24}$	$P\bar{1}$	-2.1967
$\mathrm{Li}_7(\mathrm{NiO}_2)_{10}$	C2/m	-1.8104
$\mathrm{Li}_7(\mathrm{NiO}_2)_{11}$	$P\bar{1}$	-1.7799
$\mathrm{Li}_7(\mathrm{NiO}_2)_{12}$	C2	-1.7475
${\rm Li}_7({\rm NiO}_2)_9$	$P\bar{1}$	-1.8566

Phase	Crystal structure	E_f (eV)
Li ₈ Mn ₁₅ NiO ₃₂	<i>R</i> 32	-2.2463
$\rm Li_8Mn_2O_7$	$P2_{1}/c$	-2.1027
$\rm Li_8Mn_5O_{10}$	<i>P</i> 1	-2.2420
$\rm Li_8Mn_9O_{18}$	<i>P</i> 1	-2.3100
$\rm Li_8MnNi_7O_{16}$	$P\bar{1}$	-2.0184
${ m Li}_8{ m MnO}_6$	$P6\bar{3}cm$	-2.0889
${ m Li}_8{ m MnO}_6$	$R\bar{3}$	-2.1397
${\rm Li}_8({\rm NiO}_2)_5$	$P\bar{1}$	-2.0181
$\mathrm{Li}_{95}\mathrm{Mn}_{16}\mathrm{O}_{64}$	Pmm2	-2.1482
$\mathrm{Li}_9\mathrm{Mn}_{10}\mathrm{O}_{20}$	<i>P</i> 1	-2.2959
$\mathrm{Li}_{9}\mathrm{Mn}_{12}\mathrm{Ni}_{3}\mathrm{O}_{32}$	C2	-2.1867
$\mathrm{Li}_9\mathrm{Mn}_{14}\mathrm{O}_{32}$	Cm	-2.1771
$\mathrm{Li}_9\mathrm{Mn}_{15}\mathrm{O}_{32}$	<i>P</i> 1	-2.2385
$\mathrm{Li}_9(\mathrm{NiO}_2)_{10}$	$P\bar{1}$	-1.9120
$\mathrm{Li}_9(\mathrm{NiO}_4)_2$	$Pca2_1$	-1.9236
$\mathrm{LiMn}_{0.5}\mathrm{Ni}_{0.5}\mathrm{O}_{2}$	$R\bar{3}m$ (SQS)	-2.2266
$\mathrm{LiMn_{12}O_{24}}$	P2/c	-2.0255
${\rm LiMn_2Ni_3O_6}$	C2/m	-1.8234
$LiMn_2Ni$	$Fm\bar{3}m$	-0.2014
${\rm LiMn_2NiO_6}$	C2/c	-2.0014
${\rm LiMn_2NiO_6}$	$Fm\bar{3}m$	-1.3724
$\rm LiMn_2NiO_6$	I4mm	-1.5204
${\rm LiMn_2NiO_6}$	$P\bar{1}$	-1.9901
${\rm LiMn_2NiO_8}$	C2/c	-1.4799
$LiMn_2NiO_8$	$P\bar{1}$	-1.4535

Table 1 (Continued)

Table 1 (Contra

Phase	Crystal structure	E_f (eV)
LiMn ₂ O ₃	C2/c	-2.3493
$\rm LiMn_2O_4$	C2/c	-2.2134
$\rm LiMn_2O_4$	$Fd\bar{3}m$	-2.2223
$\rm LiMn_2O_4$	$I4_1/amd$	-2.2643
${\rm LiMn_2O_4}$	Fddd	-2.2389
$\rm LiMn_2O_4$	P1	-2.2045
$\rm LiMn_2O_4$	$P6_3mc$	-2.2414
$\rm LiMn_2O_4$	R3m	-2.2163
${\rm LiMn_3Ni_2O_6}$	C2/m	-2.1406
$\rm LiMn_3Ni_4O_{12}$	$I\bar{4}2d$	-1.7805
${\rm LiMn_3(NiO_4)_2}$	Imm2	-2.1463
${\rm LiMn_3NiO_8}$	C2/m	-1.9730
${\rm LiMn_3O_4}$	C2/m	-2.3595
${\rm LiMn_3O_5}$	Pbam	-2.2942
${\rm LiMn_3O_6}$	C2/m	-2.1571
${\rm LiMn_3O_6}$	Cc	-2.1479
${ m LiMn_3O_6}$	P1	-2.1745
$LiMn_3$	$P6_3/mmc$	-0.0320
$LiMn_3$	$Pm\bar{3}m$ - $I4/mmm$	-0.0369
$\rm LiMn_4Ni_3O_{12}$	$I\bar{4}2d$	-1.8449
${\rm LiMn_4O_8}$	C2	-2.0803
${\rm LiMn_4O_8}$	C2/m	-2.1146
${\rm LiMn_4O_8}$	$F\bar{4}3m$	-2.1089
${\rm LiMn_4O_8}$	$R\bar{3}m$	-2.1115
$\rm LiMn_5O_{10}$	$P\bar{1}$	-2.0358

Phase	Crystal structure	E_f (eV)
LiMn ₅ O ₈	$P4_{3}32$	-2.2942
$\rm LiMn_7O_{12}$	C2	-2.1877
$\rm LiMn_7O_{12}$	$I4_1/acd$	-2.2083
$\rm LiMn_7O_{12}$	$Im\bar{3}$	-2.1907
${\rm LiMn_8O_{16}}$	Pmmn	-2.0445
$LiMnNi_2$	$Fm\bar{3}m$	-0.1693
$\rm LiMnNi_2O_6$	$Fm\bar{3}m$	-0.8418
$\rm LiMnNi_2O_6$	I4mm	-1.4063
${\rm LiMnNi_2O_8}$	C2/c	-1.2417
$\rm LiMnNi_2O_8$	$P\bar{1}$	-1.1354
$LiMnNiO_4$	C2/m	-1.9721
$LiMnNiO_4$	Cmcm	-1.8609
$LiMnNiO_4$	Imma	-2.0529
$LiMnO_2$	C2/c	-2.2829
$LiMnO_2$	Cc	-2.3117
$LiMnO_2$	Cm	-2.3269
$\rm LiMnO_2$	$I4_1/amd$	-2.3384
$\rm LiMnO_2$	$P\bar{1}$	-2.3302
$\rm LiMnO_2$	Pmm2 - Pmmn	-2.3372
$\rm LiMnO_2$	Pmmn	-2.2950
$\rm LiMnO_2$	$R\bar{3}m$	-2.2604
$\rm LiMnO_2$	C2/m	-2.3399
${\rm LiMnO_3}$	$Pm\bar{3}m$	-1.5904
${ m LiMnO_4}$	Cmcm	-1.4558
LiMn	$Pm\bar{3}m$ - $P\bar{6}m2$	-0.0248

Phase	Crystal structure	E_f (eV)
LiMn	Pmma - P4/mmm	-0.0321
LiMn	$R\bar{3}m$	-0.0224
$\rm LiNi_2O_3$	C2/c	-2.0033
$\rm LiNi_2O_4$	$Fd\bar{3}m$	-1.7193
$\mathrm{LiNi}_{2}\mathrm{O}_{4}$	$Fd\bar{3}m$	-1.7458
$\rm LiNi_2O_4$	$I4_1/amd$	-1.7247
LiNi ₃	$Fm\bar{3}m$	-0.0034
LiNi ₃	I4/mmm	-0.1988
$\rm LiNi_3O_4$	Cmmm	-2.0147
LiNi ₃	$P6_3/mmc$	-0.3499
LiNi ₃	$Pm\bar{3}m$	-0.0288
$\rm LiNi_4O_5$	I4/m	-2.0295
$\rm LiNi_6O_7$	$P\bar{1}$	-2.0460
$\mathrm{LiNi_9O_{10}}$	$P\bar{1}$	-2.0528
$Li(NiO_2)_2$	$P\bar{1}$	-1.7091
$Li(NiO_2)_2$	$P6_3mc$	-1.6909
$\mathrm{Li}(\mathrm{NiO}_2)_2$	$R\bar{3}$	-1.7365
$LiNiO_2$	C2/m	-1.9514
$LiNiO_2$	Cm	-1.9239
$LiNiO_2$	$I4_1/amd$	-1.9388
$LiNiO_2$	Imma	-1.9154
$LiNiO_2$	Imm2	-1.7062
$LiNiO_2$	$P\bar{1}$	-1.9478
$LiNiO_2$	P6/mmm	-1.1215
$LiNiO_2$	$R\bar{3}m$	-1.9568

Table 1 (Continued)

Phase	Crystal structure	E_f (eV)
LiNiO ₃	$Pm\bar{3}m$	-1.0715
LiNi	P4/mmm	-0.2499
LiNi	$P6_3mc$	-0.1692
LiNi	$R\bar{3}m$	-0.2329
LiO_2	$Fmar{3}m$	-0.4565
LiO_2	Pnnm	-1.3949
LiO_3	Imm2	-1.15017
Mn	$I\bar{4}3m$	0.0000
$\mathrm{Mn_{15}NiO_{32}}$	$R\bar{3}m$	-1.9258
$\mathrm{Mn}_{15}\mathrm{O}_{32}$	C2/m	-1.8206
$\mathrm{Mn}_{21}\mathrm{O}_{40}$	$I\bar{4}$	-2.0050
$Mn_2Ni_2O_5$	P4/mmm	-1.8520
$\mathrm{Mn}_2\mathrm{NiO}_4$	$Fd\bar{3}m$ - $I4_1/amd$	-2.1828
Mn_2NiO_4	Imma	-2.2293
$\mathrm{Mn}_2\mathrm{NiO}_6$	Cmce	-1.7458
$\mathrm{Mn}_2\mathrm{O}_3$	$Ia\bar{3}$	-2.3156
$\mathrm{Mn}_2\mathrm{O}_3$	$P4_{1}2_{1}2$	-2.2467
$\mathrm{Mn}_2\mathrm{O}_3$	Pbca	-2.3213
$\mathrm{Mn}_2\mathrm{O}_3$	$Pm\bar{3}m$	-1.8810
$\mathrm{Mn}_2\mathrm{O}_3$	$Pna2_1$	-2.2347
$\mathrm{Mn}_2\mathrm{O}_3$	$R\bar{3}c$	-2.2619
Mn_2O_5	P4/mbm	-1.1608
${\rm Mn_2O_7}$	$P2_{1}/c$	-0.9463
Mn_2O	$P4_2/mnm$	-1.3283
Mn ₃ Ni	$I4/mmm$ - $Fmar{3}m$	-0.1322

Table 1 (Continued)

Phase	Crystal structure	E_f (eV)
Mn ₃ NiO ₄	Cmmm	-2.3133
${ m Mn_3NiO_8}$	$P4_{3}32$	-1.7918
${ m Mn_3NiO_8}$	$R\bar{3}m$	-1.7904
Mn ₃ Ni	$P6_3/mmc$	-0.1154
Mn ₃ Ni	$Pm\bar{3}m$	-0.1056
$\mathrm{Mn}_3\mathrm{O}_4$	$Fd\bar{3}m$	-2.3781
$\mathrm{Mn}_3\mathrm{O}_4$	$I4_1/amd$	-2.3922
$\mathrm{Mn}_3\mathrm{O}_4$	Pbcm	-2.3469
$\mathrm{Mn}_3\mathrm{O}_4$	Pm	-2.1827
$\mathrm{Mn_3O}$	I4/mmm	-0.4000
$\mathrm{Mn_3O}$	$P6_3/mmc$	-1.0877
Mn_3O	$Pm\bar{3}m$	-0.2936
${ m Mn_4NiO_8}$	C2/m	-2.0801
$\mathrm{Mn}_4\mathrm{O}_5$	P4/mmm	-2.0508
$\mathrm{Mn}_5\mathrm{NiO}_{12}$	C2/m	-1.8663
$\mathrm{Mn}_5\mathrm{O}_8$	C2/m	-2.2373
$\mathrm{Mn}_5\mathrm{O}_8$	$R\bar{3}m$	-2.1716
$\mathrm{Mn_7O_{12}}$	$Im\bar{3}$	-2.1199
$\mathrm{MnNi}_{2}\mathrm{O}_{4}$	$I4_1/amd$	-1.9781
$MnNi_3$	I4/mmm	-0.4639
$\mathrm{MnNi}_3\mathrm{O}_4$	Cmmm	-2.1431
$MnNi_3$	$Pm\bar{3}m$	-0.2319
$\mathrm{MnNi}_6\mathrm{O}_8$	$Fm\bar{3}m$	-2.0796
$MnNiO_2$	P4/mmm	-2.2040
$MnNiO_3$	$Pm\bar{3}m$	-1.4496

Table 1 (Continued)

Phase	Crystal structure	\mathbf{E}_f (eV)
MnNiO ₃	$R\bar{3}$	-2.0820
MnNi	P4/mmm - Pmma	-0.4592
MnNi	$Par{6}m2$	-0.4341
MnNi	$Pm\bar{3}m$	-0.4329
MnO_2	C2/m	-1.9825
MnO_2	$Fd\bar{3}m$	-1.9705
MnO_2	I4/m	-1.9998
MnO_2	P3m1	-1.9891
MnO_2	$P4_2/mnm$	-1.9624
MnO_2	$P6_3mc$	-1.9723
MnO_2	Pnma	-1.9933
MnO_2	Pmmn	-1.8387
MnO_2	Pnnm	-1.9666
MnO_2	$R\bar{3}m$	-1.9905
MnO_3	$Pm\bar{3}m$	-0.3700
MnO	$F\bar{4}3m$	-2.3557
MnO	$Fmar{3}m$	-2.4129
MnO	$P6_3mc$	-2.3765
MnO	$P\bar{6}m2$	-2.1934
MnO	$Pm\bar{3}m$	-1.8672
MnO	Pmma	-2.1223
Ni	$Fm\bar{3}m$	0.0000
$Ni_{15}O_{16}$	$Im\bar{3}m$	-2.0007
$Ni_{15}O_{16}$	$R\bar{3}m$	-1.9409
Ni ₂ O ₃	$Pm\bar{3}m$	-0.0772

Table 1 (Continued)

	·	
Phase	Crystal structure	E_f (eV)
Ni ₂ O	$P4_2/mnm$	-1.1629
Ni_3O_4	C2/m	-1.7716
Ni_3O_4	Cmmm	-1.7983
Ni ₃ O	$P6_3/mmc$	-0.9037
$\rm Ni_4O_5$	P4/mmm	-1.5422
$\rm Ni_5O_6$	C2/m	-1.8756
$\rm Ni_6O_7$	$P\bar{1}$	-1.9007
$\rm Ni_9O_{10}$	$P\bar{1}$	-1.9534
$\rm NiO_2$	$Fd\bar{3}m$	-1.2921
NiO_2	Immm	-0.9426
NiO_2	P3m1	-1.3008
NiO_2	$R\bar{3}m$ - $C2m$	-1.3026
$\rm NiO_3$	I4/mmm	-0.2432
NiO	$F\bar{4}3m$	-1.3802
NiO	P4/mmm	-1.2036
NiO	$P6_3mc$	-1.3672
NiO	$P\bar{6}m2$	-1.6424
NiO	Pmma	-1.6355
NiO	$R\bar{3}m$ - $Fm\bar{3}m$	-2.0669
O_2	dimer	0.0000

Table 1 (Continued)

References

- Zhou, F.; Cococcioni, M.; Marianetti, C. A.; Morgan, D.; Ceder, G. Phys. Rev. B 2004, 70, 235121.
- (2) Chevrier, V. L.; Ong, S. P.; Armiento, R.; Chan, M. K.; Ceder, G. Phys. Rev. B 2010, 82, 075122.
- (3) Wang, L.; Maxisch, T.; Ceder, G. Chem. Mater. 2007, 19, 543-552.
- (4) Xiao, P.; Deng, Z.; Manthiram, A.; Henkelman, G. J. Phys. Chem. C 2012, 116, 23201–23204.
- (5) Koyama, Y.; Tanaka, I.; Nagao, M.; Kanno, R. J. Power Sources 2009, 189, 798-801.
- (6) Hinuma, Y.; Meng, Y. S.; Kang, K.; Ceder, G. Chem. Mater. 2007, 19, 1790–1800.
- (7) Saal, J. E.; Kirklin, S.; Aykol, M.; Meredig, B.; Wolverton, C. JOM 2013, 65, 1501–1509.
- (8) Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.;
 Gunter, D.; Skinner, D.; Ceder, G.; Persson, K. a. APL Mater. 2013, 1, 011002.