Electronic Supplementary Information (ESI)

Three electron channels toward two types of active sites in

MoS₂@Pt nanosheets for hydrogen evolution

X. Y. Xu,^{a,‡,*} X. F. Dong,^{a,‡} Z. J. Bao,^a R. Wang,^a J. G. Hu^{a,*} and H. B. Zeng^{b,*}

^aCollege of Physics Science and Technology, Yangzhou University, Yangzhou

225002, China. *E-mail: jghu@yzu.edu.cn; xxy@yzu.edu.cn; Fax: +86 0514

87975467; Tel: +86 0514 87970587

^bInstitute of Optoelectronics & Nanomaterials, Nanjing University of Science and Technology, Nanjing 210094, China. *E-mail: zeng.haibo@njust.edu.cn.

Fig. S1 Schematic illustration for synthesis processes of MoS_2/CFC and $MoS_2@Pt/CFC$ electrodes. Vertically oriented MoS_2 NSAs were first grown around the washed CFC substrates via citric acid-assisted hydrothermal synthetic route with sodium molybdate and sodium sulfide as the Mo and S sources, respectively. After that, the time-dependent PEC control of in-situ deposition of Pt NPs on MoS_2 NSs was used to prepare the $MoS_2@Pt$ catalysts with different loading of Pt NPs for different deposition time of 30, 60 and 90 min ($MoS_2@Pt-1$, $MoS_2@Pt-2$, and $MoS_2@Pt-3$).

Fig. S2 TEM images of MoS₂ NSs after Pt decoration for different time of (a) 30, (b) 60 and (c) 90 min. The time-dependent PEC process was successfully used to control the in-situ deposition of Pt NPs on MoS₂ NSs. The MoS₂@Pt/CFC electrodes with different loading of Pt particles were obtained after the PEC treatment for different time of 30, 60 and 90 min, and labeled as MoS₂@Pt-1, MoS₂@Pt-2, and MoS₂@Pt-3, respectively.

Fig. S3 Atomic resolution HRTEM image and corresponding FFT pattern for a typical ordering (100) domain. The honeycomb atom arrangement can be indexed to 2H-MoS₂.

Fig. S4 EDX spectrum of typical $MoS_2@Pt$ product. The composition of Mo, S and Pt elements in the $MoS_2@Pt$ was determined, and the C and Cu elements come from the supporting base for TEM characterization.

Fig. S5 Raman spectra of MoS₂ and MoS₂@Pt samples. Two characteristic peaks at around 379.1 and 404.4 cm⁻¹ correspond to the in-plane E_{2g}^1 mode, which is attributed to opposite vibration of two S atoms with respect to the Mo atom, and out-of-plane A_{1g} mode, which is associated with only S atom vibration in opposite directions.

Fig. S6 Chronoamperometry (j-t) response under ON/OFF switched light irradiation for MoS₂ and MoS₂@Pt-3 electrodes in 0.5 M H₂SO₄ electrolyte at typical applied potentials of 0, -0.3, -0.4 and -0.5 V vs. SAE. The surface Pt decoration can remarkably improve the photocurrent response at any one potential and particularly make Δj_{light} faster grow to saturation over -0.4 V vs. SAE.

Fig. S7 CV curves of (a, b) MoS₂ and (c, d) MoS₂@Pt-3 electrodes in dark and light fields at different potential scanning rates. The scan rates are 1, 2, 3, 4 and 5 mV s⁻¹. The selected potential range where no faradic current was observed is 0.29 to 0.44 V vs. RHE. The halves of the positive and negative current density differences at the center of the scanning potential ranges were plotted versus the voltage scan rate to determine their EDLCs.

Fig. S8 CV curve for the potential calibration of SAE against RHE.

Name	Area(P) CPS.eV	Atomic %	Weight %
C 1s	271752.58	64.02	37.07
O 1s	188727.06	17.52	13.51
Mo 3d	292795.71	6.12	28.89
S 2p	101659.46	12.08	18.68
Pt 4f	20077.60	0.26	2.45

Table S1 Element proportion analysis for $MoS_2@Pt$ product based on XPS data.

Table S2 Summary of literatures on electrocatalytic HER parameters of various MoS_{2} -

based catalysts.

Catalyst	Electrolyte	Onset potention (mV vs RHE)	Over potential (mV vs RHE)	Exchange Current density (j ₀ , mA cm ⁻²)*	Tafel slope (mV per decade)	Reference
Defect-rich MoS ₂	$0.5 \mathrm{~M~H_2SO_4}$	120	190	8.91×10 ⁻³	50	1
Oxygen-incorporated MoS_2	$0.5 \ M \ H_2 SO_4$	120	160	1.26×10 ⁻²	55	2
1T-MoS ₂	$0.5 \ M \ H_2 SO_4$	100	207	N/A	40	3
Li-MoS ₂ /carbon fiber paper	$0.5 \ M \ H_2 SO_4$	100	N/A	N/A	62	4
MoS_2/Au	$0.5 \ M \ H_2 SO_4$	90	N/A	9.3×10 ⁻³	69	5
MoO ₃ /MoS ₂ nanowires	$0.5 \mathrm{~M~H_2SO_4}$	150~200	240	N/A	50~60	6
Co-promoted MoS2 film	$1.0 \mathrm{~M~H_2SO_4}$	N/A	N/A	5.0×10 ⁻⁴	43	7
MoS ₂ /RGO nanosheet hybrids	$0.5 \ \mathrm{M} \ \mathrm{H_2SO_4}$	140	N/A	N/A	41	8
MoS ₂ nanosheet arrays/CFC	$0.5~\mathrm{M}~\mathrm{H_2SO_4}$	N/A	224	N/A	58	9
Vertically aligned MoS ₂ film	$0.5 \mathrm{~M~H_2SO_4}$	N/A	N/A	2.2×10^{-3}	40	10
Ultrathin MoS2 nanoplates	$0.5~\mathrm{M}~\mathrm{H_2SO_4}$	90	N/A	N/A	53	11
MoS ₂ -carbon nanopapers	$0.5 \mathrm{~M~H_2SO_4}$	N/A	80	N/A	41	12
MoS ₂ /graphene	$0.5~\mathrm{M}~\mathrm{H_2SO_4}$	100	150	N/A	41	13
Vertically aligned MoS ₂ /CFC	$0.5 \mathrm{~M~H_2SO_4}$	100	205	N/A	39	14
Mesoporous $1T - MoS_2$	$0.5 \mathrm{~M~H_2SO_4}$	N/A	154	1.58×10^{-2}	43	15
2H-MoS2 with strained S vacancies	$0.5 \mathrm{~M~H_2SO_4}$	N/A	170	N/A	60	16
MoS ₂ (0 min)	$0.5~\mathrm{M}~\mathrm{H_2SO_4}$	178	276	6.9×10 ⁻³	96	This work
MoS ₂ (30 min)	$0.5 \mathrm{~M~H_2SO_4}$	84	192	6.0×10 ⁻²	70	This work
MoS ₂ (60 min)	$0.5~\mathrm{M}~\mathrm{H_2SO_4}$	50	131	9.3×10 ⁻²	64	This work
MoS ₂ (90 min)	0.5 M H ₂ SO ₄	15	70	4.3×10 ⁻¹	36	This work

Movies S1 and S2. Digital videos taken from (1) MoS_2/CFC and (2) $MoS_2@Pt$ electrodes during their HER processes at a constant potential of -0.3 V vs. SAE. The more vigorous effervescence with the H₂ bubbles over $MoS_2@Pt$ electrode directly illuminates that the surface Pt decoration enables MoS_2 with more promise for realistic HER application.