Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Carbon Thin-layer-coated Manganese-Oxide Nanocrystal as Effective Support for Highly Durable and Active Pt Electroctalyst Stabilized at Metal–Metal Oxide–Carbon Triple Junction

Dong-Gyu Lee,^{a,b,†} Hwakyeung Jeong,^{c,†} Ki-Wan Jeon,^{a,b,†} Luojiang Zhang,^{a,b} Kwanghee Park,^b Sunmin Ryu,^b Jongwon Kim,^{c,*} and In Su Lee^{a,b,*}

^a National Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCRs) Pohang University of Science and Technology (POSTECH), Pohang 37673 (Korea)

^b Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673 (Korea)

^c Department of Chemistry, Chungbuk National University, Chungbuk 28644, Korea (Korea)

[†]D.-G. Lee, H. Jeong, and K.-W. Jeon contributed equally to this work

*To whom correspondence should be addressed

E-mail: jongwonkim@chungbuk.ac.kr (J. K.); insulee97@postech.ac.kr (I. S. L.)

Figure S1. TEM (lower) and HRTEM (upper) images of (a) $Mn_3O_4@PDA_{1.2nm}$ and (b) the resultant product of (a) after reductive annealing at 800 °C, (c) $Mn_3O_4@PDA_{1.8nm}$, (d) $MnO@C_{0.9nm}$ which was obtained from the $Mn_3O_4@PDA_{1.8nm}$ after reductive annealing and (e) *h*-C_{0.9nm} obtained from dissolution of MnO core of $MnO@C_{0.9nm}$.

Figure S2. TEM (lower) and HRTEM (upper) images of (a) $Mn_3O_4@PDA_{3.5nm}$, (b) $MnO@C_{1.8nm}$ which was obtained from reductive annealing of $Mn_3O_4@PDA_{3.5nm}$ and (c) h-C_{1.8nm} by dissolving the MnO. (d) $Mn_3O_4@PDA_{9.5nm}$, (e) $MnO@C_{7.1nm}$ and (f) h-C_{7.1nm}.

Figure S3. Photographs of the reaction suspension before and after 10 min adding the dopamine molecules to *sf*-Mn₃O₄ dispersed suspension.

Figure S4. TEM (lower) and HRTEM (upper) images of $Mn_3O_4@PDA$ prepared (a) at pH 3 in air and (b) under N₂ atmosphere at pH 8.5.

Figure S5. TEM (lower) and HRTEM (upper) images of (a) sf-CoMn(III)₂O₄, (b) sf-Mn(II)Fe₂O₄, (c) sf-Fe₃O₄ and (d) SiO₂ nanoparticles after a reaction with dopamine molecules under N₂ atmosphere.

Figure S6. (a) Nitrogen adsorption/desorption isotherm at 77K of the $Mn_3O_4/Pt@C_{1.8nm}$ and (b) pore size distribution estimated by using the H-K method.

Figure S7. XRD patterns obtained after galvanic replacement reaction after 30 min and 1h.

Figure S8. High resolution TEM images of surface of $Mn_3O_4/Pt@C_{1.8nm}$.

Figure S9. TEM and HRTEM images of galvanic replacement reaction of $MnO@C_{7.1nm}$ with $PtCl_4^{2-}$ solution with different reaction time at (a) 10 min, (b) 30 min and (c) 1h.

Figure S10. Comparison of electrocatalytic activities for ORR among various products of Mn₃O₄/Pts@C_{1.8nm}, Mn₃O₄/Pts, Mn₃O₄/Pts@C_{700°C}, MnO@C_{7.1nm}/Pts and Mn₃O₄/Pts-CB.

Figure S11. Cyclic voltammograms of the $Mn_3O_4/Pts@C_{1.8nm}$ catalysts in 0.1 M HClO₄ obtained before (black) and after (red) 3000 potential sweeps.

Table S1. The estimated Mn ions in the supernatant solution by using ICP after the reaction of sf-Mn₃O₄ with dopamine molecules under air atmosphere.

	Mn ion concentration
Supernatant solution after reaction of sf -Mn ₃ O ₄ with dopamine	20.0 mg/L
Supernatant solution without dopamine molecules (control experiment)	0.2 mg/L