Electronic Supporting Information

Reversible adsorption and storage of secondary explosives from water using a Tröger's base-functionalised polymer

Sankarasekaran Shanmugaraju,*a Deivasigamani Umadevi,^b Aramballi J. Savyasachi,^a Kevin Byrne,^b Manuel Ruether,^a Wolfgang Schmitt,^b Graeme W. Watson,^b and Thorfinnur Gunnlaugsson*^a

^aSchool of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.

^bSchool of Chemistry and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.

Table of Contents:	Page No
Energy minimized structure of monomer	S2
Frontier molecular orbitals of TB-COP	S2
Photographs of colour changes observed during the polymerization	S3
FT-IR spectra of L and TB-COP	S3
Thermogravimetric analysis of TB-COP	S4
X-ray powder diffraction pattern of TB-COP	S4
The CO ₂ adsorption-desorption isotherm measured at 273 K for TB-COP	S 5
BET linear plot calculated from CO ₂ adsorption isotherm at 273 K	S 5
The gas uptake capacitates of TB-COP for CO_2 over N_2 and H_2 at 273 K	S6
Optimized geometries of PA.TB-COP with the associated binding energies	S6
Raman spectra of TB-COP and PA before and after the adsorption	S7
The solid-state CP/MAS ¹⁵ N-NMR of TB-COP	S7
Freundlich isotherm fitting for PA adsorption in TB-COP	S8
The effect of pH on the extent of PA adsorption by TB-COP	S8
Adsorption experiments with other interfering analytes	S9-S13
HOMO and LUMO energies for selected analytes and the TB-COP adsorbent	S14
Scanning electron microscopy image of recycled TB-COP after 5th cycle	S14

Fig. S1. Energy minimized structure of monomer L. Color code: gray, C; red, O; blue, N, white, H.

Fig. S2. Frontier molecular orbitals, with their corresponding energy values, for one monomer unit of TB-COP.

Fig. S3. Photographs of colour changes observed during the polymerization of monomer triamine (L) to Tröger's base polymer (TB-COP).

Fig. S4. FT-IR spectra of monomer triamine L (black) and polymer TB-COP (red).

Fig. S5. Thermogravimetric analysis of as-synthesised TB-COP measured under N₂.

Fig. S6. X-ray powder diffraction pattern of as-synthesised TB-COP.

Fig. S7. The CO₂ adsorption-desorption isotherm measured at 273 K for TB-COP.

Fig. S8. BET linear plot and surface area of **TB-COP** calculated from CO₂ adsorption isotherm at 273 K.

Fig. S9. The gas uptake capacitates of TB-COP for CO_2 over N_2 and H_2 at 273 K.

Fig. S10. Raman spectra of TB-COP and PA before and after the adsorption by TB-COP.

Fig. S11. The solid-state CP-MAS ¹⁵N-NMR (400 MHz) spectrum **TB-COP** before (A) and after (B) adsorption of PA.

Fig. S12. Optimized structures, nearest intermolecular distances and the binding energy values of the two-possible mode of binding of PA with **TB-COP** (color codes: red = oxygen, blue = nitrogen, grey = carbon and white = hydrogen).

Fig. S13. Freundlich isotherm fitting for PA adsorption in TB-COP.

Fig. S14. The effect of pH on the extent of PA adsorption by TB-COP at 298 K.

Fig. S15. Change in the absorption spectra (left) of the water solution of PA (0.5 mM) in the presence of L (3 mg) monitored at different time intervals ($0 \rightarrow 60$ minutes) at 298 K and its corresponding adsorption efficiency plot (right).

Fig. S16. Change in the absorption spectra of the water solution of 2-NP (0.5 mM) in the presence of **TB-COP** (3 mg) monitored at different time intervals ($0 \rightarrow 60$ minutes) at 298 K and its corresponding adsorption efficiency plot (right).

Fig. S17. Change in the absorption spectra of the water solution of 3-NP (0.5 mM) in the presence of **TB-COP** (3 mg) monitored at different time intervals ($0 \rightarrow 60$ minutes) at 298 K and its corresponding adsorption efficiency plot (right).

Fig. S18. Change in the absorption spectra of the water solution of 4-NP (0.5 mM) in the presence of **TB-COP** (3 mg) monitored at different time intervals ($0 \rightarrow 60$ minutes) at 298 K and its corresponding adsorption efficiency plot (right).

Fig. S19. Change in the absorption spectra of the water solution of 2,4-DNP (0.5 mM) in the presence of **TB-COP** (3 mg) monitored at different time intervals ($0 \rightarrow 60$ minutes) at 298 K and its corresponding adsorption efficiency plot (right).

Fig. S20. Change in the absorption spectra of tap water solution of PA (0.5 mM) in the presence of **TB-COP** (3 mg) monitored at different time intervals ($0 \rightarrow 60$ minutes) at 298 K and its corresponding adsorption efficiency plot (right).

Fig. S21. Change in the absorption spectra of the water solution of 4-NA (0.5 mM) in the presence of TB-COP (3 mg) monitored at different time intervals ($0 \rightarrow 60$ minutes) at 298 K and its corresponding adsorption efficiency plot (right).

Fig. S22. Change in the absorption spectra of the water solution of PFP (0.5 mM) in the presence of **TB-COP** (3 mg) monitored at different time intervals ($0 \rightarrow 60$ minutes) at 298 K and its corresponding adsorption efficiency plot (right).

Fig. S23. Change in the absorption spectra of the water solution of PhOH (0.5 mM) in the presence of **TB-COP** (3 mg) monitored at different time intervals ($0 \rightarrow 60$ minutes) at 298 K and its corresponding adsorption efficiency plot (right).

Fig. S24. Change in the absorption spectra of the water solution of p-TSA (0.5 mM) in the presence of **TB-COP** (3 mg) monitored at different time intervals ($0 \rightarrow 60$ minutes) at 298 K and its corresponding adsorption efficiency plot (right).

Fig. S25. HOMO and LUMO energies for selected analytes and the TB-COP adsorbent.

Fig. S26. Scanning electron microscopy image (A) and its enlarged image (B) of recycled **TB-COP** after 5th cycle.